找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra and Group Theory for Physicists and Engineers; Yair Shapira Textbook 2023Latest edition The Editor(s) (if applicable) and T

[復制鏈接]
樓主: Clinton
11#
發(fā)表于 2025-3-23 11:56:12 | 只看該作者
Spline: Variational Model in 3-DBy now, our finite-element mesh is quite regular and accurate. It is now time to define basis functions (B-splines) on it. What is a basis function? It has the following properties:
12#
發(fā)表于 2025-3-23 17:00:47 | 只看該作者
Permutation Group and the DeterminantLet us design a new group: the group of permutations. It will help define the determinant in a new way. This will give us a few attractive properties. Later on, in quantum chemistry, this will help analyze the electronic structure in the atom.
13#
發(fā)表于 2025-3-23 20:23:51 | 只看該作者
https://doi.org/10.1007/978-3-031-22422-5Group theory; Linear algebra; High dimensional vectors; Fourier matrices; Markov chain; Quantum mechanics
14#
發(fā)表于 2025-3-23 23:56:24 | 只看該作者
Numerical Integrationur numerical results are encouraging: as the mesh refines, the numerical integral gets more and more accurate. This indicates that our original algorithm is indeed robust and could be used in even more complicated domains.
15#
發(fā)表于 2025-3-24 05:36:13 | 只看該作者
16#
發(fā)表于 2025-3-24 09:46:11 | 只看該作者
17#
發(fā)表于 2025-3-24 11:50:16 | 只看該作者
18#
發(fā)表于 2025-3-24 16:34:48 | 只看該作者
Markov Matrix and Its Spectrum: Toward Search Enginesheory, they may help design a weighted graph and model a stochastic flow in it. This makes a Markov chain, converging to a unique steady state. This has a practical application in modern search engines in the Internet.
19#
發(fā)表于 2025-3-24 21:20:38 | 只看該作者
Mesh Regularityomised. After all, to approximate the curved boundary well, the tetrahedra must be a little thin. Still, thanks to our tricks, regularity decreases only moderately and linearly from level to level. This is not too bad: it is unavoidable and indeed worthwhile to compromise some regularity for the sake of high accuracy.
20#
發(fā)表于 2025-3-24 23:53:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
香港 | 德昌县| 广宗县| 崇明县| 丰台区| 柳州市| 城固县| 襄城县| 西青区| 黔江区| 崇文区| 商水县| 莫力| 全椒县| 扎囊县| 电白县| 汉沽区| 洞头县| 雅江县| 涿州市| 建平县| 青川县| 滦南县| 仙游县| 峨眉山市| 龙游县| 洪雅县| 易门县| 交城县| 石台县| 齐河县| 甘肃省| 建昌县| 徐州市| 静乐县| 抚松县| 勃利县| 东乌珠穆沁旗| 吉首市| 都江堰市| 云龙县|