找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra and Geometry; Igor R. Shafarevich,Alexey O. Remizov Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 groups, rings, mod

[復(fù)制鏈接]
樓主: Eschew
31#
發(fā)表于 2025-3-27 00:01:51 | 只看該作者
32#
發(fā)表于 2025-3-27 04:53:18 | 只看該作者
33#
發(fā)表于 2025-3-27 09:16:41 | 只看該作者
od introduction to the subject.Numerous examples and applica.This book on linear algebra and geometry is based on a course given by renowned academician I.R. Shafarevich at Moscow State University. The book begins with the theory of linear algebraic equations and the basic elements of matrix theory
34#
發(fā)表于 2025-3-27 11:39:25 | 只看該作者
Matrices and Determinants,symmetric multilinear function of the rows. Using some basic elements of permutation theory, we continue to study the properties of determinants; in particular, we derive explicit formula for determinants. Finally, we define the rank of a matrix and the main operations on matrices (sum, product, inverse matrix) and investigate their properties.
35#
發(fā)表于 2025-3-27 14:51:32 | 只看該作者
Linear Transformations of a Vector Space to Itself,lizable. Analogously, for a real vector space, we obtain necessary and sufficient conditions for a linear transformation to be block-diagonalizable. Finally, the notion of orientation of a real vector space is considered.
36#
發(fā)表于 2025-3-27 21:08:31 | 只看該作者
Quadratic and Bilinear Forms, are established. Complex, real, and Hermitian forms are investigated in greater detail. For illustration of the obtained results, we consider an application of Sylvester’s criterion to algebraic equations (necessary and sufficient conditions for a real polynomial to have only real roots).
37#
發(fā)表于 2025-3-27 23:27:01 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:04 | 只看該作者
Hyperbolic Geometry,rief historical overview is given. At the end of the chapter, some geometric notions (distance, angle, etc.) are introduced, and basic facts of hyperbolic geometry are established. A brief discussion of elliptic geometry is also presented.
39#
發(fā)表于 2025-3-28 06:34:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙湾县| 岚皋县| 杂多县| 平罗县| 九龙县| 涞源县| 延边| 木兰县| 连城县| 西贡区| 五莲县| 淮安市| 永善县| 集贤县| 成武县| 金川县| 嘉义市| 鲜城| 封丘县| 罗甸县| 洛浦县| 三明市| 望城县| 遵义市| 合阳县| 合水县| 磴口县| 南江县| 九龙坡区| 迁安市| 塘沽区| 靖州| 安达市| 虞城县| 郁南县| 浏阳市| 鄂尔多斯市| 渭源县| 湘潭县| 扎鲁特旗| 台安县|