找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Algebra; A. Ramachandra Rao,P. Bhimasankaram Book 2000Latest edition Hindustan Book Agency (India) 2000

[復(fù)制鏈接]
查看: 21444|回復(fù): 43
樓主
發(fā)表于 2025-3-21 17:26:53 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Linear Algebra
編輯A. Ramachandra Rao,P. Bhimasankaram
視頻videohttp://file.papertrans.cn/587/586247/586247.mp4
叢書名稱Texts and Readings in Mathematics
圖書封面Titlebook: Linear Algebra;  A. Ramachandra Rao,P. Bhimasankaram Book 2000Latest edition Hindustan Book Agency (India) 2000
描述The vector space approach to the treatment of linear algebra is useful for geometric intuition leading to transparent proofs; it‘s also useful for generalization to infinite-dimensional spaces. The Indian School, led by Professors C.R. Rao and S.K. Mitra, successfully employed this approach. This book follows their approach and systematically develops the elementary parts of matrix theory, exploiting the properties of row and column spaces of matrices. Developments in linear algebra have brought into focus several techniques not included in basic texts, such as rank-factorization, generalized inverses, and singular value decomposition. These techniques are actually simple enough to be taught at the advanced undergraduate level. When properly used, they provide a better understanding of the topic and give simpler proofs, making the subject more accessible to students. This book explains these techniques.
出版日期Book 2000Latest edition
版次2
doihttps://doi.org/10.1007/978-93-86279-01-9
isbn_ebook978-93-86279-01-9
copyrightHindustan Book Agency (India) 2000
The information of publication is updating

書目名稱Linear Algebra影響因子(影響力)




書目名稱Linear Algebra影響因子(影響力)學(xué)科排名




書目名稱Linear Algebra網(wǎng)絡(luò)公開度




書目名稱Linear Algebra網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear Algebra被引頻次




書目名稱Linear Algebra被引頻次學(xué)科排名




書目名稱Linear Algebra年度引用




書目名稱Linear Algebra年度引用學(xué)科排名




書目名稱Linear Algebra讀者反饋




書目名稱Linear Algebra讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:48:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:39:30 | 只看該作者
Linear equations,olution of linear equations also plays an important role in obtaining approximate solutions of non-linear equations. In this chapter, we make a systematic study of the theoretical aspects of the solution of linear equations and give some computational procedures.
地板
發(fā)表于 2025-3-22 04:49:56 | 只看該作者
Determinants, non-singular matrix. In the Calculus of several variables, the Jacobian used in transforming a multiple integral uses determinant. This use arises from the fact that determinant is the volume of a certain parallelopiped. Determinants are also useful in various other subjects like Physics, Astronomy and Statistics.
5#
發(fā)表于 2025-3-22 12:02:04 | 只看該作者
Vector spaces,itude, the new force is . where . is the point on . such that . = ?. with the usual convention. In general, . times the force . is . where . is a point on . (extended either way, if necessary) such that . = ., where a may be positive, negative or zero.
6#
發(fā)表于 2025-3-22 15:57:25 | 只看該作者
Rank and inverse,is chapter we define rank and study its basic properties. We also study nullity, existence and properties of inverse and a few other topics like projectors and change of bases. Computational procedures will be taken up in the next chapter.
7#
發(fā)表于 2025-3-22 18:53:38 | 只看該作者
8#
發(fā)表于 2025-3-23 00:42:58 | 只看該作者
9#
發(fā)表于 2025-3-23 03:27:02 | 只看該作者
Vector spaces,h . represents the magnitude and . to . the direction of the force. If we now apply another force . at the point ., the resultant (also called the sum) of the two forces is obtained by the .: it is . where . is a parallelogram. Also, if the strength of the force . is doubled without changing the dir
10#
發(fā)表于 2025-3-23 08:21:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
志丹县| 讷河市| 大同市| 余庆县| 大方县| 安岳县| 香港 | 黄浦区| 刚察县| 五指山市| 公主岭市| 遂宁市| 乌苏市| 东辽县| 吉木乃县| 汉阴县| 铁岭市| 和静县| 东宁县| 巴南区| 应城市| 波密县| 宜黄县| 安龙县| 涿州市| 鄂伦春自治旗| 且末县| 都昌县| 南平市| 习水县| 育儿| 格尔木市| 兴安盟| 金昌市| 永康市| 乌什县| 宣威市| 东宁县| 霍山县| 安国市| 新平|