找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[復(fù)制鏈接]
樓主: Autonomous
21#
發(fā)表于 2025-3-25 06:08:14 | 只看該作者
Convergence to a Semimartingale,limit process . also is a semimartingale; not quite an arbitrary one, though: since the method is based here on convergence of martingales and on the relations between . and its characteristics, we need these characteristics to indeed characterize the distribution. ?(.)of . So, in most of the chapte
22#
發(fā)表于 2025-3-25 08:28:19 | 只看該作者
Hellinger Processes, Absolute Continuity and Singularity of Measures,years later, Hajek [80] and Feldman [53] proved a similar alternative for Gaussian measures, and several authors gave effective criteria in terms of the covariance functions or spectral quantities, for the laws of two Gaussian processes.
23#
發(fā)表于 2025-3-25 12:02:18 | 只看該作者
Martingale Problems and Changes of Measures,compute these finite-dimensional distributions, except for PII. On the other hand, many usual processes are semimartingales; and a natural tool has emerged in Chapter II for studying them, namely their characteristics: at least, they are often easy to compute.
24#
發(fā)表于 2025-3-25 16:28:21 | 只看該作者
Convergence of Processes with Independent Increments,firstly, the prelimiting processes, as well of course as the limiting process, have independent increments; secondly, only the limiting process has independent increments; thirdly, the limiting process itself belongs to some rather broad class of semi-martingales.
25#
發(fā)表于 2025-3-25 23:39:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:41:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:38:49 | 只看該作者
Book 19871st editionnd stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exp
28#
發(fā)表于 2025-3-26 10:56:43 | 只看該作者
29#
發(fā)表于 2025-3-26 16:31:37 | 只看該作者
30#
發(fā)表于 2025-3-26 17:49:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嵊州市| 临西县| 金平| 太康县| 怀柔区| 肥西县| 文安县| 平凉市| 贵定县| 台中市| 江山市| 新营市| 新宁县| 贺兰县| 凌源市| 双鸭山市| 正安县| 中阳县| 稻城县| 郑州市| 旺苍县| 时尚| 青浦区| 抚州市| 紫金县| 闵行区| 龙口市| 洪泽县| 东乌珠穆沁旗| 潮州市| 枣阳市| 攀枝花市| 山西省| 玉环县| 平顺县| 特克斯县| 确山县| 普兰店市| 双牌县| 桓台县| 陈巴尔虎旗|