找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 2008Latest edition Springer-Verlag New York 2008 Dimension.Grad.curvature.di

[復(fù)制鏈接]
查看: 52081|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:48:23 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Lie Sphere Geometry
副標(biāo)題With Applications to
編輯Thomas E. Cecil
視頻videohttp://file.papertrans.cn/586/585714/585714.mp4
概述Provides the reader with all the necessary background to reach the frontiers of research in this area.Fills a gap in the literature; no other thorough examination of Lie sphere geometry and its applic
叢書名稱Universitext
圖書封面Titlebook: Lie Sphere Geometry; With Applications to Thomas E. Cecil Book 2008Latest edition Springer-Verlag New York 2008 Dimension.Grad.curvature.di
描述.This book provides a clear and comprehensive modern treatment of Lie sphere geometry and its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. The link with Euclidean submanifold theory is established via the Legendre map, which provides a powerful framework for the study of submanifolds, especially those characterized by restrictions on their curvature spheres...This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry....Further key features of Lie Sphere Geometry 2/e:..- Provides the reader with all the necessary background to reach the frontiers of research in this area..- Fills a gap in the literature;
出版日期Book 2008Latest edition
關(guān)鍵詞Dimension; Grad; curvature; differential geometry; manifold; projective geometry
版次2
doihttps://doi.org/10.1007/978-0-387-74656-2
isbn_softcover978-0-387-74655-5
isbn_ebook978-0-387-74656-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2008
The information of publication is updating

書目名稱Lie Sphere Geometry影響因子(影響力)




書目名稱Lie Sphere Geometry影響因子(影響力)學(xué)科排名




書目名稱Lie Sphere Geometry網(wǎng)絡(luò)公開度




書目名稱Lie Sphere Geometry網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lie Sphere Geometry被引頻次




書目名稱Lie Sphere Geometry被引頻次學(xué)科排名




書目名稱Lie Sphere Geometry年度引用




書目名稱Lie Sphere Geometry年度引用學(xué)科排名




書目名稱Lie Sphere Geometry讀者反饋




書目名稱Lie Sphere Geometry讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:04:12 | 只看該作者
0172-5939 r thorough examination of Lie sphere geometry and its applic.This book provides a clear and comprehensive modern treatment of Lie sphere geometry and its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of
地板
發(fā)表于 2025-3-22 05:33:29 | 只看該作者
5#
發(fā)表于 2025-3-22 09:37:49 | 只看該作者
Lie Sphere Transformations,This is followed by a treatment of Laguerre geometry in Section 3.4. Finally, in Section 3.5, we show that the Lie sphere group is generated by the union of the groups of M?bius and Laguerre. There we also describe the place of Euclidean, spherical and hyperbolic metric geometries within the context of these more general geometries.
6#
發(fā)表于 2025-3-22 13:25:10 | 只看該作者
https://doi.org/10.1007/978-0-387-74656-2Dimension; Grad; curvature; differential geometry; manifold; projective geometry
7#
發(fā)表于 2025-3-22 19:42:54 | 只看該作者
Thomas E. CecilProvides the reader with all the necessary background to reach the frontiers of research in this area.Fills a gap in the literature; no other thorough examination of Lie sphere geometry and its applic
8#
發(fā)表于 2025-3-22 22:51:19 | 只看該作者
Universitexthttp://image.papertrans.cn/l/image/585714.jpg
9#
發(fā)表于 2025-3-23 03:38:33 | 只看該作者
10#
發(fā)表于 2025-3-23 07:02:55 | 只看該作者
Legendre Submanifolds,In this chapter, we develop the framework necessary to study submanifolds within the context of Lie sphere geometry.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同仁县| 北票市| 凌海市| 资溪县| 饶河县| 长海县| 游戏| 六盘水市| 哈密市| 银川市| 合山市| 廉江市| 辽源市| 台南县| 双峰县| 左权县| 定结县| 高邮市| 玉门市| 泰州市| 南安市| 河西区| 都江堰市| 厦门市| 东丽区| 乾安县| 东兰县| 沁源县| 赤壁市| 全州县| 两当县| 临沂市| 弥渡县| 香格里拉县| 陈巴尔虎旗| 连云港市| 瑞昌市| 厦门市| 济宁市| 斗六市| 城步|