找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups, Lie Algebras, and Representations; An Elementary Introd Brian C. Hall Textbook 2015Latest edition Springer International Publis

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 10:32:26 | 只看該作者
https://doi.org/10.1007/978-3-319-13467-3Baker-Campbell-Hausdorff formula; Cartan-Weyl theory; Lie algebras; Lie groups; representation theory
12#
發(fā)表于 2025-3-23 17:36:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:54:38 | 只看該作者
The Matrix ExponentialThe exponential of a matrix plays a crucial role in the theory of Lie groups. The exponential enters into the definition of the Lie algebra of a matrix Lie group (Sect.?3.3) and is the mechanism for passing information from the Lie algebra to the Lie group.
14#
發(fā)表于 2025-3-24 00:34:33 | 只看該作者
15#
發(fā)表于 2025-3-24 02:33:40 | 只看該作者
Compact Lie Groups and Maximal ToriIn this chapter and Chapter?. we develop the representation theory of a connected, compact matrix Lie group ..?The main result is a “theorem of the highest weight,” which is very similar to our main results for semisimple Lie algebras.
16#
發(fā)表于 2025-3-24 10:13:51 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:24 | 只看該作者
Fundamental Groups of Compact Lie GroupsIn this section, we briefly review the notion of the fundamental group of a topological space. For a more detailed treatment, the reader should consult any standard book on algebraic topology, such as [Hat, Chapter 1]. Let . be any path-connected Hausdorff topological space and let . be a fixed point in . (the “basepoint”).
18#
發(fā)表于 2025-3-24 18:13:59 | 只看該作者
19#
發(fā)表于 2025-3-24 22:30:20 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/585705.jpg
20#
發(fā)表于 2025-3-24 23:50:34 | 只看該作者
Representations of Semisimple Lie Algebraspresentations whose highest weights are the fundamental weights in Definition?8.36. Thus, we require a new method of constructing the irreducible representation of . with a given dominant integral highest weight. This construction will be the main topic of the present chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永春县| 环江| 清徐县| 玛多县| 塘沽区| 娱乐| 工布江达县| 遂平县| 望奎县| 阜新| 大邑县| 沙雅县| 平南县| 宿州市| 奈曼旗| 郁南县| 烟台市| 迁安市| 浦北县| 南汇区| 额敏县| 松原市| 蒲江县| 同心县| 杭锦旗| 南通市| 大新县| 博野县| 乌苏市| 且末县| 逊克县| 蕲春县| 登封市| 锦屏县| 霍山县| 潜山县| 威信县| 丹东市| 澄迈县| 连平县| 安新县|