找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups; An Approach through Claudio Procesi Textbook 2007 Springer-Verlag New York 2007 Group representation.algebra.algebraic group.f

[復制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 22:43:25 | 只看該作者
General Methods and Ideas,tematically since most of the interesting examples will appear only in the next chapters. The exposition here is quite far from the classical point of view since we are forced to establish the language in a rather thin general setting. Hopefully this will be repaid in the chapters in which we will treat the interesting results of Invariant Theory.
32#
發(fā)表于 2025-3-27 03:26:08 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:14 | 只看該作者
Binary Forms,here they all began, the old invariant theory of the 19. century in its most complete achievement: the theory of binary forms. We show a few of the many computational ideas which were developed at that time.
34#
發(fā)表于 2025-3-27 11:42:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:21:24 | 只看該作者
Symmetric Functions,p some of the very basic theorems on symmetric functions, in part as a way to give a look into 19. century invariant theory, but as well to establish some useful formulas which will show their full meaning only after developing the representation theory of the linear and symmetric groups.
36#
發(fā)表于 2025-3-27 20:48:58 | 只看該作者
37#
發(fā)表于 2025-3-27 23:44:53 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:46 | 只看該作者
Group Representations,s. We will use the necessary techniques from elementary algebraic geometry or functional analysis, referring to standard textbooks. One of the main points is a very tight relationship between a special class of algebraic groups, the reductive groups, and compact Lie groups. We plan to illustrate thi
39#
發(fā)表于 2025-3-28 08:32:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:12:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
兴和县| 宜丰县| 开阳县| 辉南县| 泾川县| 澄城县| 洪湖市| 广元市| 郧西县| 江华| 济南市| 潞城市| 富顺县| 镇原县| 宝应县| 弥勒县| 平定县| 桐乡市| 湘潭县| 鄂尔多斯市| 浦东新区| 延安市| 穆棱市| 得荣县| 池州市| 大港区| 白河县| 平远县| 海淀区| 河津市| 衡阳市| 宁远县| 化州市| 通城县| 蒙山县| 阳朔县| 拉萨市| 且末县| 舟山市| 阿鲁科尔沁旗| 剑阁县|