找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups; Daniel Bump Textbook 2013Latest edition Springer Science+Business Media New York 2013 Frobenius-Schur duality.Keating-Snaith f

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 13:12:35 | 只看該作者
Haar MeasureIf . is a locally compact group, there is, up to a constant multiple, a unique regular Borel measure .. that is invariant under left translation. Here . means that .(.) = .(.) for all measurable sets ..
12#
發(fā)表于 2025-3-23 17:36:00 | 只看該作者
Schur OrthogonalityIn this chapter and the next two, we will consider the representation theory of compact groups. Let us begin with a few observations about this theory and its relationship to some related theories.
13#
發(fā)表于 2025-3-23 19:49:22 | 只看該作者
Compact OperatorsIf . is a normed vector space, a linear operator . is called . if there exists a constant . such that . for all .. In this case, the smallest such . is called the . of ., and is denoted |.|.
14#
發(fā)表于 2025-3-23 22:27:43 | 只看該作者
The Peter–Weyl TheoremIn this chapter, we assume that . is a compact group. Let .(.) be the convolution ring of continuous functions on .. It is a ring (without unit unless . is finite) under the multiplication of .:
15#
發(fā)表于 2025-3-24 06:00:29 | 只看該作者
16#
發(fā)表于 2025-3-24 10:10:52 | 只看該作者
The Exponential MapThe exponential map, introduced for closed Lie subgroups of . in ., can be defined for a general Lie group . as a map Lie(.) → ..
17#
發(fā)表于 2025-3-24 13:45:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:27 | 只看該作者
19#
發(fā)表于 2025-3-24 20:04:27 | 只看該作者
20#
發(fā)表于 2025-3-25 00:13:16 | 只看該作者
The Universal CoverIf . is a Hausdorff topological space, a . is a continuous map . : [0,1].. The path is . if the endpoints coincide : .(0) = .(1). A closed path is also called a ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
将乐县| 乌拉特中旗| 榆树市| 虹口区| 辽宁省| 宽城| 钟山县| 乐陵市| 徐水县| 连州市| 土默特左旗| 宁蒗| 高密市| 西城区| 诸城市| 耒阳市| 姚安县| 湖州市| 措勤县| 定州市| 泰宁县| 郧西县| 呼伦贝尔市| 繁昌县| 天门市| 开远市| 藁城市| 确山县| 靖边县| 延边| 泊头市| 巴林左旗| 长治市| 柞水县| 板桥市| 东光县| 泾川县| 镇坪县| 江门市| 钟山县| 哈尔滨市|