找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Leveraging Data Science for Global Health; Leo Anthony Celi,Maimuna S. Majumder,Melek Somai Textbook‘‘‘‘‘‘‘‘ 2020 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Enkephalin
11#
發(fā)表于 2025-3-23 12:35:34 | 只看該作者
12#
發(fā)表于 2025-3-23 15:46:49 | 只看該作者
13#
發(fā)表于 2025-3-23 21:42:49 | 只看該作者
14#
發(fā)表于 2025-3-24 01:17:25 | 只看該作者
Machine Learning for Clinical Predictive Analyticsliability. In the second section, we will introduce several important concepts in machine learning in a colloquial manner, such as learning scenarios, objective/target function, error and loss function and metrics, optimization and model validation, and finally a summary of model selection methods (
15#
發(fā)表于 2025-3-24 05:33:33 | 只看該作者
itional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient..978-3-030-47996-1978-3-030-47994-7
16#
發(fā)表于 2025-3-24 07:38:37 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:06 | 只看該作者
http://image.papertrans.cn/l/image/585401.jpg
18#
發(fā)表于 2025-3-24 18:37:16 | 只看該作者
https://doi.org/10.1007/978-3-030-47994-7Open Access; Big Data; Machine Learning; Artificial Intelligence; Health Informatics; Digital Disease Sur
19#
發(fā)表于 2025-3-24 21:33:06 | 只看該作者
Machine Learning for Patient Stratification and Classification Part 1: Data Preparation and Analysisugh the basic concepts underlying machine learning and the tools needed to easily implement it using the Python programming language and Jupyter notebook documents. It is divided into three main parts: part 1—data preparation and analysis; part 2—unsupervised learning for clustering, and part 3—supervised learning for classification.
20#
發(fā)表于 2025-3-25 02:32:34 | 只看該作者
Machine Learning for Patient Stratification and Classification Part 2: Unsupervised Learning with Clugh the basic concepts underlying machine learning and the tools needed to easily implement it using the Python programming language and Jupyter notebook documents. It is divided into three main parts: part 1—data preparation and analysis; part 2—unsupervised learning for clustering and part 3—supervised learning for classification.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和龙市| 巴林左旗| 广平县| 洪湖市| 凌云县| 银川市| 乐都县| 苏尼特左旗| 新营市| 水富县| 福建省| 阿城市| 海南省| 甘孜县| 山西省| 石泉县| 明光市| 拜城县| 孟州市| 五台县| 石门县| 柳林县| 阳原县| 东明县| 隆昌县| 元江| 邯郸县| 高密市| 长宁区| 淅川县| 白水县| 江源县| 百色市| 淅川县| 孙吴县| 泰宁县| 夏邑县| 通化市| 沙洋县| 天门市| 广宗县|