找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on the Theory of Algebraic Numbers; Erich Hecke Textbook 1981 Springer Science+Business Media New York 1981 Algebraic.Algebraisch

[復(fù)制鏈接]
樓主: GLOAT
11#
發(fā)表于 2025-3-23 10:57:00 | 只看該作者
Elements of Rational Number Theory, division (not always) to form integers. Higher arithmetic uses methods of investigation analogous to those of real or complex numbers. Moreover it also uses analytic methods which belong to other areas of mathematics, such as infinitesimal calculus and complex function theory, in the derivation of
12#
發(fā)表于 2025-3-23 16:47:58 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
13#
發(fā)表于 2025-3-23 21:24:59 | 只看該作者
14#
發(fā)表于 2025-3-24 02:14:45 | 只看該作者
The Law of Quadractic Reciprocity in Arbitrary Number Fields, was the first to recognize the great importance which these sums have in number theory. His attention was directed to the connection between these sums and the quadratic reciprocity law and he showed how a proof for the reciprocity law is obtained by determining the value of these sums. Today we kn
15#
發(fā)表于 2025-3-24 03:01:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:56:39 | 只看該作者
Lectures on the Theory of Algebraic Numbers978-1-4757-4092-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
17#
發(fā)表于 2025-3-24 12:02:51 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/l/image/583635.jpg
18#
發(fā)表于 2025-3-24 14:49:57 | 只看該作者
General Arithmetic of Algebraic Number Fields,d . = .(1). To develop the foundations of an arithmetic of algebraic numbers we first need a definition of algebraic integer. The following requirements can be reasonably imposed on a concept of integer.
19#
發(fā)表于 2025-3-24 19:30:09 | 只看該作者
20#
發(fā)表于 2025-3-25 01:17:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 息烽县| 六盘水市| 萨迦县| 靖宇县| 新建县| 武功县| 保山市| 黑龙江省| 泗水县| 阜平县| 北川| 乌兰县| 天全县| 宜丰县| 南和县| 噶尔县| 盐边县| 墨玉县| 长汀县| 东乡族自治县| 南溪县| 肇源县| 三台县| 大城县| 即墨市| 栾城县| 罗平县| 曲麻莱县| 句容市| 建水县| 哈巴河县| 云南省| 鲜城| 新昌县| 彭州市| 咸阳市| 图片| 凤阳县| 肥城市| 石阡县|