找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Sphere Arrangements – the Discrete Geometric Side; Károly Bezdek Book 2013 Springer International Publishing Switzerland 2013

[復(fù)制鏈接]
樓主: 弄碎
11#
發(fā)表于 2025-3-23 11:03:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:44:06 | 只看該作者
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
13#
發(fā)表于 2025-3-23 18:36:16 | 只看該作者
Károly Bezdekdjustment and debt management strategies. The question should not be whether such states have sufficient political will to make hard adjustment decisions; rather, the question is, given that adjustment is unavoidable, how can we explain the selection and implementation of two complementary adjustmen
14#
發(fā)表于 2025-3-24 01:40:59 | 只看該作者
Unit Sphere Packings,e emphases are on the following five topics: the contact number problem (generalizing the problem of kissing numbers), lower bounds for Voronoi cells (studying Voronoi cells from volumetric point of view), dense sphere packings in Euclidean 3-space (studying a strong version of the Kepler conjecture
15#
發(fā)表于 2025-3-24 04:22:17 | 只看該作者
16#
發(fā)表于 2025-3-24 10:15:56 | 只看該作者
Contractions of Sphere Arrangements,res. The research on this fundamental topic started with the conjecture of E. T. Poulsen and M. Kneser in the late 1950s. In this chapter we survey the status of the long-standing Kneser–Poulsen conjecture in Euclidean as well as in non-Euclidean spaces.
17#
發(fā)表于 2025-3-24 12:19:29 | 只看該作者
Proofs on Contractions of Sphere Arrangements,r dimensional. Second, we prove an analogue of the Kneser–Poulsen conjecture for hemispheres in spherical .-space. Third, we give a proof of a Kneser–Poulsen-type theorem for convex polyhedra in hyperbolic 3-space.
18#
發(fā)表于 2025-3-24 17:56:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:13:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳县| 班玛县| 瓮安县| 永善县| 正蓝旗| 汉阴县| 永胜县| 曲周县| 上犹县| 永顺县| 新竹市| 郴州市| 泗水县| 图们市| 静海县| 四平市| 高雄市| 海伦市| 金昌市| 辰溪县| 贵阳市| 商水县| 尚义县| 大悟县| 赤峰市| 于都县| 湘潭市| 泸州市| 来凤县| 东莞市| 荥经县| 辽阳市| 桑植县| 明水县| 林甸县| 宝清县| 平邑县| 日喀则市| 商南县| 黄龙县| 武平县|