找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Mathematical Theory of Extremum Problems; Igor Vladimirovich Girsanov,B. T. Poljak Book 1972 Springer-Verlag Berlin · Heidelbe

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 03:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 11:02:56 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:26 | 只看該作者
Sufficient Extremum Conditions. Examples,We now apply the results of the preceding lecture to various problems.
24#
發(fā)表于 2025-3-25 17:26:59 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:11 | 只看該作者
Introduction,systematized and brought together under the heading of the ., with its innumerable applications to physics and mechanics. Attention was devoted principally to the analysis of . and . defined over the entire space or restricted to some smooth manifold. The extremum conditions in this case are the . (
26#
發(fā)表于 2025-3-26 03:42:57 | 只看該作者
Supporting Hyperplanes and Extremal Points,e closed hyperplane . is called a . for A at the point x.. The geometric sense of a supporting hyperplane is quite simple: the set A lies on one side of the hyperplane and cuts it in one point x. (Fig. 5).
27#
發(fā)表于 2025-3-26 05:40:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:00 | 只看該作者
Calculation of Dual Cones,plication of the Dubovitskii-Milyutin theorem to determine necessary conditions for an extremum, it remains to show how one constructs dual cones, This we now proceed to do. Some results in this connection were presented in Lecture 5 (Lemmas 5.2 to 5.10).
29#
發(fā)表于 2025-3-26 15:09:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:35:42 | 只看該作者
Sufficient Extremum Conditions,re also sufficient. Of course, elementary examples show that in general this is not true. Nevertheless, we shall prove that, under certain additional assumptions, the necessary extremum conditions are also sufficient, in an important class of extremal problems — convex problems. Sufficient condition
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇雄县| 西林县| 图们市| 中江县| 临沧市| 新巴尔虎左旗| 聂荣县| 辽阳市| 禄丰县| 波密县| 益阳市| 阳东县| 桃园县| 平潭县| 广南县| 大城县| 彭山县| 托克托县| 临漳县| 崇明县| 铜梁县| 佛教| 喜德县| 遂溪县| 石嘴山市| 崇义县| 巴中市| 成武县| 金坛市| 凤庆县| 咸丰县| 耿马| 长岭县| 皋兰县| 怀安县| 阳谷县| 宜宾市| 潞城市| 商城县| 万盛区| 汪清县|