找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Lectures on Hyperbolic Geometry; Riccardo Benedetti,Carlo Petronio Textbook 1992 Springer-Verlag Berlin Heidelberg 1992 Cohomology.Flat Fi

[復(fù)制鏈接]
樓主: 撕成碎片
31#
發(fā)表于 2025-3-27 00:24:06 | 只看該作者
0172-5939 g results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basic
32#
發(fā)表于 2025-3-27 03:07:31 | 只看該作者
Textbook 1992and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it r
33#
發(fā)表于 2025-3-27 05:44:06 | 只看該作者
Hyperbolic Manifolds and the Compact Two-dimensional Case,omplete then it can be obtained as a quotient of hyperbolic space). Afterwards we shall consider the special case of compact surfaces and we shall give a complete classification of the hyperbolic structures on a surface of fixed genus (that is we shall give a parametrization of the so-called Teichmüller space).
34#
發(fā)表于 2025-3-27 12:08:18 | 只看該作者
The Space of Hyperbolic Manifolds and the Volume Function,t such an invariant is (topologically) complete for . = 2 in the compact case, and it may be proved that in the finite-volume case it becomes complete together with the number of cusp ends (“punctures”). Hence the problem of studying the volume function arises quite naturally: this is the aim of the present chapter.
35#
發(fā)表于 2025-3-27 16:33:36 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:23:23 | 只看該作者
Miodrag LovricThis is the first attempt in Statistics to engage the most recognized international authors Including the most prominent authors from many developing countries To write relatively brief papers on topi
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海口市| 黔江区| 子长县| 辽宁省| 云龙县| 东乡| 桂东县| 如东县| 旬邑县| 陆丰市| 新安县| 响水县| 萝北县| 友谊县| 玉溪市| 象州县| 仁化县| 彭泽县| 茌平县| 三明市| 太原市| 定结县| 连云港市| 宁德市| 横山县| 镇平县| 密山市| 资源县| 伊春市| 利辛县| 澎湖县| 茂名市| 景谷| 晋江市| 西吉县| 芦溪县| 高陵县| 扎赉特旗| 滁州市| 商丘市| 阳谷县|