找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Constructive Approximation; Fourier, Spline, and Volker Michel Textbook 2013 Springer Science+Business Media New York 2013 Four

[復制鏈接]
樓主: incontestable
31#
發(fā)表于 2025-3-26 22:06:00 | 只看該作者
32#
發(fā)表于 2025-3-27 02:08:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:21:54 | 只看該作者
Spherical Wavelet Analysisapplied to numerous geodetic and geophysical problems and have been adapted for several other classes of tasks (e.g., the approximation of vectorial and tensorial functions) since their introduction. These wavelets have similar features in comparison to Euclidean wavelets, although several aspects b
34#
發(fā)表于 2025-3-27 09:35:03 | 只看該作者
Spherical Slepian Functionsonics are ideal to represent global phenomena or structures with, at least, a very large spatial extension. The localized basis functions discussed so far are isotropic, that is, they are associated to zonal functions.
35#
發(fā)表于 2025-3-27 14:31:39 | 只看該作者
36#
發(fā)表于 2025-3-27 18:36:47 | 只看該作者
Textbook 2013s as they occur in the geosciences and medical imaging. It comprises the author’s lectures on classical approximation methods based on orthogonal polynomials and selected modern tools such as splines and wavelets..Methods for approximating functions on the real line are treated first, as they provid
37#
發(fā)表于 2025-3-28 01:31:44 | 只看該作者
2296-5009 trations included to optimize the understanding of topics.Co.Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball .focuses on spherical problems as they occur in the geosciences and medical imaging. It comprises the author’s lectures
38#
發(fā)表于 2025-3-28 05:16:33 | 只看該作者
Basic Aspectsalized trial functions, such as splines, wavelets, and Slepian functions, on the sphere. We will also see that the spherical splines and wavelets have analogous properties in comparison to their 1D counterparts..Before we can discuss the really interesting stuff, we need some definitions, notations, and basic propositions of spherical analysis.
39#
發(fā)表于 2025-3-28 09:50:09 | 只看該作者
40#
發(fā)表于 2025-3-28 14:01:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
都匀市| 随州市| 大冶市| 元阳县| 府谷县| 灵川县| 内丘县| 通许县| 福州市| 刚察县| 彭阳县| 夹江县| 莆田市| 饶阳县| 广州市| 呼伦贝尔市| 青田县| 深州市| 林芝县| 海安县| 高陵县| 漳浦县| 聂荣县| 吉安县| 同心县| 土默特左旗| 驻马店市| 洛南县| 民县| 黄浦区| 北流市| 页游| 顺昌县| 襄城县| 凤山市| 清流县| 镇康县| 罗城| 淳安县| 澄迈县| 嘉善县|