找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Quantum Mechanics; A Two-Term Course Luigi E. Picasso Textbook 2016 Springer International Publishing Switzerland 2016 Angular

[復(fù)制鏈接]
樓主: architect
51#
發(fā)表于 2025-3-30 08:24:56 | 只看該作者
52#
發(fā)表于 2025-3-30 13:54:28 | 只看該作者
The Harmonic Oscillator,ergy for a one-dimensional oscillator. In this section we shall limit ourselves to obtain only some qualitative conditions on the energy levels of the oscillator, mainly with the purpose of giving to the reader the occasion to get acquainted with some techniques and concepts of quantum mechanics.
53#
發(fā)表于 2025-3-30 20:21:45 | 只看該作者
54#
發(fā)表于 2025-3-30 20:59:15 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:28 | 只看該作者
56#
發(fā)表于 2025-3-31 07:59:01 | 只看該作者
From Einstein to de Broglie,According to classical physics, the energy associated with a monochromatic electromagnetic wave is proportional to its intensity; the intensity can have any value above zero, and can therefore be varied with continuity. Furthermore this energy is distributed in space in a continuous way.
57#
發(fā)表于 2025-3-31 13:12:32 | 只看該作者
Representation Theory,Let ∣..〉, .?=?1, 2, … be an orthonormal basis of vectors.
58#
發(fā)表于 2025-3-31 16:27:08 | 只看該作者
,Schr?dinger Equation for One-Dimensional Systems,In this section we will be concerned with the relatively simple problem of determining the eigenvalues of the Hamiltonian of the free particle. We will discuss the one-dimensional case. Our system consists therefore of a particle constrained to move on a straight line.
59#
發(fā)表于 2025-3-31 18:51:45 | 只看該作者
One-Dimensional Systems,In Chap. . we have found the eigenvalues and the eigenvectors of the Hamiltonian of the one-dimensional harmonic oscillator. We want now to find the eigenfunctions .(.) = <. | .> of the Hamiltonian in the Schr?dinger representation.
60#
發(fā)表于 2025-4-1 00:42:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大埔区| 米脂县| 横峰县| 洛川县| 林甸县| 遵义市| 祁连县| 和林格尔县| 泰州市| 于都县| 聂荣县| 岱山县| 迁安市| 西峡县| 绥德县| 巩义市| 明星| 永兴县| 丰镇市| 潮州市| 筠连县| 九龙城区| 磐石市| 资溪县| 卓尼县| 改则县| 上饶县| 孝感市| 定安县| 金门县| 隆回县| 砚山县| 静海县| 凤凰县| 长武县| 西和县| 紫阳县| 白水县| 偏关县| 安国市| 叶城县|