找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Abstract Algebra; II. Linear Algebra Nathan Jacobson Textbook 1953 The Editor(s) (if applicable) and The Author(s) 1953 Calcula

[復制鏈接]
樓主: 法官所用
31#
發(fā)表于 2025-3-26 22:03:03 | 只看該作者
0072-5285 n familiarity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup-posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of t
32#
發(fā)表于 2025-3-27 04:23:03 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:18 | 只看該作者
34#
發(fā)表于 2025-3-27 09:47:00 | 只看該作者
Euclidean and Unitary Spaces, is customary to denote it simply as (., .) instead of .(., .) as in the preceding chapter. The geometric meaning of (.) is clear. It gives the product of the cosine of the angle between . and . by the lengths of the two vectors. The length of . can also be expressed in terms of the scalar product, namely, |.| = (.,.).
35#
發(fā)表于 2025-3-27 14:21:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:24:58 | 只看該作者
The Theory of a Single Linear Transformation,e in this chapter the Hamilton-Cayley Frobenius theorems on the characteristic and minimum polynomials of a matrix. Finally we study the algebra of linear transformations that commute with a given transformation.
37#
發(fā)表于 2025-3-28 01:37:49 | 只看該作者
Products of Vector Spaces, Kronecker product of two vector spaces over a field. We also discuss the elements of tensor algebra, and we consider the extension of a vector space over a field Φ to a vector space over a field P containing Φ. Finally we consider the concept of a (non-associative) algebra over a field, and we define the direct product of algebras.
38#
發(fā)表于 2025-3-28 04:00:23 | 只看該作者
Textbook 1953ity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup-posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of the fundame
39#
發(fā)表于 2025-3-28 09:00:34 | 只看該作者
40#
發(fā)表于 2025-3-28 14:11:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阿勒泰市| 独山县| 新丰县| 西吉县| 东阿县| 阜阳市| 梅州市| 铜鼓县| 酒泉市| 阿坝县| 桃园县| 古蔺县| 德江县| 桐庐县| 敦煌市| 新疆| 临朐县| 堆龙德庆县| 丽江市| 林西县| 昌吉市| 宿松县| 潜江市| 龙门县| 高州市| 南丹县| 马尔康县| 河北省| 无极县| 青河县| 乡宁县| 漳浦县| 奉贤区| 桦甸市| 河西区| 白银市| 墨玉县| 邻水| 五河县| 晋中市| 南召县|