找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Abstract Algebra; II. Linear Algebra Nathan Jacobson Textbook 1953 The Editor(s) (if applicable) and The Author(s) 1953 Calcula

[復(fù)制鏈接]
樓主: 法官所用
31#
發(fā)表于 2025-3-26 22:03:03 | 只看該作者
0072-5285 n familiarity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup-posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of t
32#
發(fā)表于 2025-3-27 04:23:03 | 只看該作者
33#
發(fā)表于 2025-3-27 06:22:18 | 只看該作者
34#
發(fā)表于 2025-3-27 09:47:00 | 只看該作者
Euclidean and Unitary Spaces, is customary to denote it simply as (., .) instead of .(., .) as in the preceding chapter. The geometric meaning of (.) is clear. It gives the product of the cosine of the angle between . and . by the lengths of the two vectors. The length of . can also be expressed in terms of the scalar product, namely, |.| = (.,.).
35#
發(fā)表于 2025-3-27 14:21:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:24:58 | 只看該作者
The Theory of a Single Linear Transformation,e in this chapter the Hamilton-Cayley Frobenius theorems on the characteristic and minimum polynomials of a matrix. Finally we study the algebra of linear transformations that commute with a given transformation.
37#
發(fā)表于 2025-3-28 01:37:49 | 只看該作者
Products of Vector Spaces, Kronecker product of two vector spaces over a field. We also discuss the elements of tensor algebra, and we consider the extension of a vector space over a field Φ to a vector space over a field P containing Φ. Finally we consider the concept of a (non-associative) algebra over a field, and we define the direct product of algebras.
38#
發(fā)表于 2025-3-28 04:00:23 | 只看該作者
Textbook 1953ity with the basic concepts treated in Volume I: groups, rings, fields, homomorphisms, is presup-posed. However, we have tried to make this account of linear algebra independent of a detailed knowledge of our first volume. References to specific results are given occasionally but some of the fundame
39#
發(fā)表于 2025-3-28 09:00:34 | 只看該作者
40#
發(fā)表于 2025-3-28 14:11:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米易县| 榕江县| 墨竹工卡县| 白水县| 绥江县| 道孚县| 区。| 鹿邑县| 贵阳市| 西峡县| 浦东新区| 栾川县| 新乐市| 马公市| 祁东县| 嫩江县| 碌曲县| 平阴县| 特克斯县| 武强县| 治县。| 原阳县| 盖州市| 瑞金市| 奉化市| 巫溪县| 吉安县| 丹阳市| 津南区| 靖边县| 仙桃市| 安阳县| 榕江县| 巧家县| 和田县| 阿拉善右旗| 江西省| 彭阳县| 阿鲁科尔沁旗| 什邡市| 红桥区|