找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Leavitt Path Algebras and Classical K-Theory; A. A. Ambily,Roozbeh Hazrat,B. Sury Conference proceedings 2020 Springer Nature Singapore Pt

[復(fù)制鏈接]
樓主: Constrict
51#
發(fā)表于 2025-3-30 12:17:23 | 只看該作者
52#
發(fā)表于 2025-3-30 14:39:49 | 只看該作者
53#
發(fā)表于 2025-3-30 17:40:01 | 只看該作者
https://doi.org/10.1007/978-981-15-1611-5Graph C*-algebras; Quillen-Suslin theory; Graded Steinberg Algebras; Injective Leavitt Complex; Sandwich
54#
發(fā)表于 2025-3-30 21:19:16 | 只看該作者
55#
發(fā)表于 2025-3-31 01:37:29 | 只看該作者
Gr?bner Bases and Dimension Formulas for Ternary Partially Associative Operadsnsymmetric operad with one ternary operation ., we compute a Gr?bner basis for the ideal generated by partial associativity .. In the category of .-graded vector spaces with Koszul signs, the (homological) degree of . may be even or odd. We use the Gr?bner bases to calculate the dimension formulas for these operads.
56#
發(fā)表于 2025-3-31 05:29:59 | 只看該作者
On the Completability of Unimodular Rows of Length Threeetable. We use this criterion to prove that certain unimodular rows over rings of dimension 2 are completable, and reprove results of Seshadri, Bass and Serre. We also give a different proof of a result of Bhatwadekar–Keshari.
57#
發(fā)表于 2025-3-31 09:59:25 | 只看該作者
A. A. Ambily,Roozbeh Hazrat,B. SuryOffers a comprehensive introduction to Leavitt path algebras and graph C*-algebras and their connection with classical K-theory.Gathers survey articles on Leavitt path algebras to provide an introduct
58#
發(fā)表于 2025-3-31 16:01:12 | 只看該作者
59#
發(fā)表于 2025-3-31 18:12:47 | 只看該作者
978-981-15-1613-9Springer Nature Singapore Pte Ltd. 2020
60#
發(fā)表于 2025-3-31 22:59:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 滦南县| 沙雅县| 河西区| 徐州市| 丘北县| 敖汉旗| 郁南县| 民和| 桃江县| 徐州市| 汉阴县| 微山县| 呼伦贝尔市| 宁河县| 新龙县| 连城县| 徐州市| 灵宝市| 临桂县| 西平县| 左权县| 上思县| 武乡县| 增城市| 多伦县| 潮安县| 庄河市| 全南县| 永兴县| 平武县| 礼泉县| 临颍县| 筠连县| 车险| 绥滨县| 云梦县| 济阳县| 浦县| 牡丹江市| 镇坪县|