找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Least-Squares Finite Element Methods; Max D. Gunzburger,Pavel B. Bochev Book 2009 Springer-Verlag New York 2009 Analysis.Bochev.Elements.F

[復(fù)制鏈接]
查看: 39376|回復(fù): 51
樓主
發(fā)表于 2025-3-21 18:15:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Least-Squares Finite Element Methods
編輯Max D. Gunzburger,Pavel B. Bochev
視頻videohttp://file.papertrans.cn/584/583083/583083.mp4
概述Puts least-squares finite element methods on a common mathematically sound foundation.Reviews strengths and weaknesses, successes and open problems of finite element methods.Appendices include results
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Least-Squares Finite Element Methods;  Max D. Gunzburger,Pavel B. Bochev Book 2009 Springer-Verlag New York 2009 Analysis.Bochev.Elements.F
描述Since their emergence in the early 1950s, ?nite element methods have become one of the most versatile and powerful methodologies for the approximate numerical solution of partial differential equations. At the time of their inception, ?nite e- ment methods were viewed primarily as a tool for solving problems in structural analysis. However, it did not take long to discover that ?nite element methods could be applied with equal success to problems in other engineering and scienti?c ?elds. Today, ?nite element methods are also in common use, and indeed are often the method of choice, for incompressible ?uid ?ow, heat transfer, electromagnetics, and advection-diffusion-reaction problems, just to name a few. Given the early conn- tion between ?nite element methods and problems engendered by energy minimi- tion principles, it is not surprising that the ?rst mathematical analyses of ?nite e- ment methods were given in the environment of the classical Rayleigh–Ritz setting. Yet again, using the fertile soil provided by functional analysis in Hilbert spaces, it did not take long for the rigorous analysis of ?nite element methods to be extended to many other settings. Today, ?nite element m
出版日期Book 2009
關(guān)鍵詞Analysis; Bochev; Elements; Finite; Least-Squares; finite element method; hyperbolic partial differential
版次1
doihttps://doi.org/10.1007/b13382
isbn_softcover978-1-4419-2160-4
isbn_ebook978-0-387-68922-7Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York 2009
The information of publication is updating

書目名稱Least-Squares Finite Element Methods影響因子(影響力)




書目名稱Least-Squares Finite Element Methods影響因子(影響力)學(xué)科排名




書目名稱Least-Squares Finite Element Methods網(wǎng)絡(luò)公開度




書目名稱Least-Squares Finite Element Methods網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Least-Squares Finite Element Methods被引頻次




書目名稱Least-Squares Finite Element Methods被引頻次學(xué)科排名




書目名稱Least-Squares Finite Element Methods年度引用




書目名稱Least-Squares Finite Element Methods年度引用學(xué)科排名




書目名稱Least-Squares Finite Element Methods讀者反饋




書目名稱Least-Squares Finite Element Methods讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:25 | 只看該作者
Variations on Least-Squares Finite Element Methodsto keep the book from becoming prohibitively long, the discussion of these additional topics is brief. Our goal here is to acquaint the reader with the wide scope of the least-squares finite element universe; details about the topics discussed may be found in the cited references.
板凳
發(fā)表于 2025-3-22 03:29:52 | 只看該作者
地板
發(fā)表于 2025-3-22 04:50:12 | 只看該作者
5#
發(fā)表于 2025-3-22 10:52:44 | 只看該作者
6#
發(fā)表于 2025-3-22 16:03:19 | 只看該作者
Control and Optimization Problemserest in the application of sophisticated local and global optimization strategies, e.g., Lagrange multiplier methods, sensitivity or adjoint-based gradient methods, quasi-Newton methods, evolutionary algorithms, and so on.
7#
發(fā)表于 2025-3-22 20:05:38 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:27 | 只看該作者
Analysis Toolsthese spaces are the most relevant ones to the subject matter of the book, namely the numerical solution of PDEs by least-squares finite element methods (LSFEMs). For more comprehensive treatments of the various function spaces arising in the theory of PDEs, see, e.g., [1, 17, 183, 187, 250, 265, 304, 331, 342].
9#
發(fā)表于 2025-3-23 05:04:31 | 只看該作者
10#
發(fā)表于 2025-3-23 08:07:00 | 只看該作者
Alternative Variational Formulationslty, and augmented Lagrangian variational formulations are members of this class. Although they are not within the focus of this book, in Section 2.1, we provide a concise summary of the corresponding finite element methods. There are several reasons for doing so. First, such formulations lead to im
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
府谷县| 康保县| 扶风县| 洛隆县| 绥阳县| 望江县| 黄龙县| 宁乡县| 郁南县| 鲜城| 靖远县| 吉木萨尔县| 木兰县| 河间市| 延庆县| 义乌市| 大港区| 陆川县| 德庆县| 南靖县| 平江县| 通海县| 琼中| 手游| 汉中市| 高陵县| 贡觉县| 英超| 监利县| 赞皇县| 琼海市| 伊宁县| 施甸县| 杨浦区| 封丘县| 稻城县| 当阳市| 万载县| 墨玉县| 上高县| 英山县|