找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines; Theory, Algorithms a Jamal Amani Rad,Kourosh Parand,Sneh

[復(fù)制鏈接]
樓主: advocate
31#
發(fā)表于 2025-3-26 23:58:43 | 只看該作者
Fractional Chebyshev Kernel Functions: Theory and Applicationd fractional Chebyshev functions, various Chebyshev kernel functions are presented, and fractional Chebyshev kernel functions are introduced. Finally, the performance of the various Chebyshev kernel functions is illustrated on two sample datasets.
32#
發(fā)表于 2025-3-27 01:46:56 | 只看該作者
Fractional Legendre Kernel Functions: Theory and Application some basic features of Legendre and fractional Legendre functions are introduced and reviewed, and then the kernels of these functions are introduced and validated. Finally, the performance of these functions in solving two problems (two sample datasets) is measured.
33#
發(fā)表于 2025-3-27 05:16:30 | 只看該作者
Fractional Gegenbauer Kernel Functions: Theory and?Applicationl properties of Gegenbauer and fractional Gegenbauer functions are presented and reviewed, followed by the kernels of these functions, which are introduced and validated. Finally, the performance of these functions in addressing two issues (two example datasets) is evaluated.
34#
發(fā)表于 2025-3-27 11:01:27 | 只看該作者
Classification Using Orthogonal Kernel Functions: Tutorial on?ORSVM Packagech effort to implement. To make it easy for anyone who needs to try and use these kernels, a Python package is provided here. In this chapter, the ORSVM package is introduced as an SVM classification package with orthogonal kernel functions.
35#
發(fā)表于 2025-3-27 17:36:44 | 只看該作者
Solving Ordinary Differential Equations by LS-SVM Finally, by presenting some numerical examples, the results of the current method are compared with other methods. The comparison shows that the proposed method is fast and highly accurate with exponential convergence.
36#
發(fā)表于 2025-3-27 18:47:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:49:25 | 只看該作者
38#
發(fā)表于 2025-3-28 04:12:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:18:19 | 只看該作者
Basics of SVM Method and Least Squares SVM a unique solution and also satisfies the Karush–Kuhn–Tucker conditions, it can be solved very efficiently. In this chapter, the formulation of optimization problems which have arisen in the various forms of support vector machine algorithms is discussed.
40#
發(fā)表于 2025-3-28 12:40:57 | 只看該作者
Fractional Chebyshev Kernel Functions: Theory and Applicationgonal functions is producing powerful kernel functions for the support vector machine algorithm. Maybe the simplest orthogonal function that can be used for producing kernel functions is the Chebyshev polynomials. In this chapter, after reviewing some essential properties of Chebyshev polynomials an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长宁县| 浙江省| 庆元县| 乐都县| 田阳县| 新竹县| 任丘市| 大庆市| 宁河县| 师宗县| 铜山县| 霍邱县| 福贡县| 内黄县| 和平区| 毕节市| 丰顺县| 武川县| 兴宁市| 太湖县| 拉萨市| 阿勒泰市| 巨野县| 牙克石市| 万盛区| 建昌县| 阳朔县| 锡林浩特市| 锦屏县| 高平市| 威海市| 荥经县| 两当县| 江都市| 社旗县| 大方县| 齐河县| 若羌县| 乌恰县| 滨海县| 房山区|