找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in Graphical Models; Michael I. Jordan Book 1998 Springer Science+Business Media Dordrecht 1998 Bayesian network.Latent variable

[復(fù)制鏈接]
樓主: Enlightening
21#
發(fā)表于 2025-3-25 03:58:14 | 只看該作者
Latent Variable Modelsining a joint distribution over visible and latent variables, the corresponding distribution of the observed variables is then obtained by marginalization. This allows relatively complex distributions to be expressed in terms of more tractable joint distributions over the expanded variable space. On
22#
發(fā)表于 2025-3-25 09:59:48 | 只看該作者
Stochastic Algorithms for Exploratory Data Analysis: Data Clustering and Data Visualizationllow the data analyst to detect structure in vectorial or relational data. Conceptually, the clustering and visualization procedures are formulated as combinatorial or continuous optimization problems which are solved by stochastic optimization.
23#
發(fā)表于 2025-3-25 12:41:34 | 只看該作者
Learning Bayesian Networks with Local Structureach explicitly represents and learns the . in the . (CPDs) that quantify these networks. This increases the space of possible models, enabling the representation of CPDs with a variable number of parameters. The resulting learning procedure induces models that better emulate the interactions present
24#
發(fā)表于 2025-3-25 16:15:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:59:26 | 只看該作者
Bucket Elimination: A Unifying Framework for Probabilistic Inference inference literature and clarifies the relationship of such algorithms to nonserial dynamic programming algorithms. A general method for combining conditioning and bucket elimination is also presented. For all the algorithms, bounds on complexity are given as a function of the problem’s structure.
26#
發(fā)表于 2025-3-26 02:02:13 | 只看該作者
Improving the Mean Field Approximation Via the Use of Mixture Distributionssterior is multi-modal, only one of the modes can be captured. To improve the mean field approximation in such cases, we employ mixture models as posterior approximations, where each mixture component is a factorized distribution. We describe efficient methods for optimizing the Parameters in these models.
27#
發(fā)表于 2025-3-26 05:44:49 | 只看該作者
Introduction to Monte Carlo Methodsnte Carlo methods is presented. The chapter concludes with a discussion of advanced methods, including methods for reducing random walk behaviour..For details of Monte Carlo methods, theorems and proofs and a full list of references, the reader is directed to Neal (1993), Gilks, Richardson and Spiegelhalter (1996), and Tanner (1996).
28#
發(fā)表于 2025-3-26 12:01:57 | 只看該作者
29#
發(fā)表于 2025-3-26 14:23:44 | 只看該作者
Learning Bayesian Networks with Local Structuretances, than those of the standard procedure, which ignores the local structure of the CPDs. Our results also show that networks learned with local structures tend to be more complex (in terms of arcs), yet require fewer parameters.
30#
發(fā)表于 2025-3-26 19:21:42 | 只看該作者
An Introduction to Variational Methods for Graphical Modelsound for local probabilities, and discussing methods for extending these bounds to bounds on global probabilities of interest. Finally we return to the examples and demonstrate how variational algorithms can be formulated in each case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 灌云县| 齐河县| 凯里市| 恩施市| 昆山市| 明星| 滨州市| 伽师县| 安仁县| 西丰县| 乐都县| 刚察县| 无极县| 故城县| 云南省| 全南县| 阿拉善左旗| 石嘴山市| 水城县| 南昌县| 秦安县| 广昌县| 新和县| 桐柏县| 古浪县| 曲水县| 车致| 武汉市| 扎囊县| 大渡口区| 阿拉善盟| 祥云县| 保亭| 绍兴市| 安仁县| 芜湖县| 永年县| 峨边| 长治市| 永康市|