找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning from Imbalanced Data Sets; Alberto Fernández,Salvador García,Francisco Herrer Book 2018 Springer Nature Switzerland AG 2018 Machi

[復(fù)制鏈接]
樓主: Autopsy
11#
發(fā)表于 2025-3-23 12:41:10 | 只看該作者
Cost-Sensitive Learning,orithms. The important issue of how to obtain the cost matrix is discussed in Sect. 4.2. Section 4.3 describes MetaCost, a popular wrapper approach for adapting any classifier to a cost-sensitive setting, while Sect. 4.4 discusses various aspects of cost-sensitive decision trees. Other cost-sensitiv
12#
發(fā)表于 2025-3-23 14:46:50 | 只看該作者
13#
發(fā)表于 2025-3-23 21:16:12 | 只看該作者
Algorithm-Level Approaches,given to four groups of methods. First, modifications of SVMs will be discussed in Sect. 6.2. Section 6.3 will focus on skew-insensitive decision trees. Variants of NN classifiers for imbalanced problems will be presented in Sect. 6.4 and skew insensitive Bayesian in Sect. 6.5. Finally, one-class cl
14#
發(fā)表于 2025-3-24 01:16:29 | 只看該作者
Ensemble Learning,e first introduce the foundations of ensemble learning and the most commonly considered ensemble methods for imbalanced problems, that is, Bagging and Boosting (Sect. 7.2). Then, we review the existing ensemble techniques in the framework of imbalanced datasets, focusing on two-class problems. Each
15#
發(fā)表于 2025-3-24 03:46:34 | 只看該作者
Imbalanced Classification with Multiple Classes,mbalanced problems are enumerated in Sect. 8.4. Next, a brief experimental study to contrast some of the state-of-the-art and promising approaches in this area is carried out in Sect. 8.5. Finally, the concluding remarks are given in Sect. 8.6.
16#
發(fā)表于 2025-3-24 06:43:45 | 只看該作者
Dimensionality Reduction for Imbalanced Learning,ill also provide the recent advances in feature selection and feature extraction by non-linear methods. In addition, we will mention a recently proposed discretization approach which is able to reduce the numeric features into categories. The chapter is organized as follows. After a short introducti
17#
發(fā)表于 2025-3-24 11:10:28 | 只看該作者
18#
發(fā)表于 2025-3-24 17:10:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:23:09 | 只看該作者
20#
發(fā)表于 2025-3-25 00:08:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河间市| 馆陶县| 荔波县| 峨眉山市| 墨玉县| 延寿县| 昭平县| 济宁市| 五莲县| 瑞金市| 娄烦县| 新龙县| 嘉荫县| 且末县| 长葛市| 常山县| 徐水县| 临桂县| 镇沅| 崇州市| 恩施市| 九龙城区| 雷山县| 景东| 奉新县| 嘉义县| 石台县| 噶尔县| 丹东市| 余江县| 松阳县| 望城县| 鹤壁市| 渝中区| 台中市| 宁城县| 沂南县| 海淀区| 衡水市| 东辽县| 获嘉县|