找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 17th International C Meinolf Sellmann,Kevin Tierney Conference proceedings 2023 The Editor(s) (if ap

[復制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-26 22:57:05 | 只看該作者
32#
發(fā)表于 2025-3-27 03:38:19 | 只看該作者
33#
發(fā)表于 2025-3-27 05:18:12 | 只看該作者
,Fast and?Robust Constrained Optimization via?Evolutionary and?Quadratic Programming,erature and sequential quadratic programming approaches. The proposed method is evaluated on numerous constrained optimization tasks from simple low dimensional problems to high dimensional realistic trajectory optimization scenarios, and showcase that is able to outperform other evolutionary algori
34#
發(fā)表于 2025-3-27 11:40:30 | 只看該作者
Hierarchical Machine Unlearning,ing are still not widely used due to model applicability, usage overhead, etc. Based on this situation, we propose a novel hierarchical learning method, Hierarchical Machine Unlearning (HMU), with the known distribution of unlearning requests. Compared with previous methods, ours has better efficien
35#
發(fā)表于 2025-3-27 13:59:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:09:56 | 只看該作者
,Generative Models via?Optimal Transport and?Gaussian Processes,that, for a given input, it provides both a prediction and the associated uncertainty. Thus, the generative properties are, by design, guaranteed by sampling the generated element around the prediction and depending on the uncertainty. Results on both toy examples and a dataset of images are provide
37#
發(fā)表于 2025-3-27 22:33:37 | 只看該作者
,Real-World Streaming Process Discovery from?Low-Level Event Data,tes (i.e., case, activity and timestamp) are known, and apply unscaled discovery techniques to produce control-flow process models. In this research, we propose an original approach we have designed and deployed to mine processes of businesses. It features fully streamed and real-time techniques to
38#
發(fā)表于 2025-3-28 04:00:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:38 | 只看該作者
,Heuristics Selection with?ML in?CP Optimizer, of diverse benchmark problems that is used to evaluate and document CPO performance before each release. This work also addresses two methodological challenges: the ability of the trained predictive models to robustly generalize to the diverse set of problems that may be encountered in practice, an
40#
發(fā)表于 2025-3-28 11:29:49 | 只看該作者
,Model-Based Feature Selection for?Neural Networks: A Mixed-Integer Programming Approach,lly reduce the size of the input to .15% while maintaining a good classification accuracy. This allows us to design DNNs with significantly fewer connections, reducing computational effort and producing DNNs that are more robust towards adversarial attacks.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西林县| 庐江县| 东乌珠穆沁旗| 杂多县| 修水县| 观塘区| 鄯善县| 满洲里市| 遂平县| 延川县| 彭阳县| 长汀县| 岫岩| 宁海县| 隆子县| 井陉县| 象山县| 宝山区| 宣威市| 贺兰县| 横山县| 探索| 包头市| 新密市| 永德县| 察雅县| 视频| 汤原县| 湘潭县| 元阳县| 宜宾市| 华宁县| 定安县| 贺州市| 光泽县| 崇阳县| 商河县| 蕲春县| 恩施市| 山西省| 深州市|