找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 17th International C Meinolf Sellmann,Kevin Tierney Conference proceedings 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: 不友善
31#
發(fā)表于 2025-3-26 22:57:05 | 只看該作者
32#
發(fā)表于 2025-3-27 03:38:19 | 只看該作者
33#
發(fā)表于 2025-3-27 05:18:12 | 只看該作者
,Fast and?Robust Constrained Optimization via?Evolutionary and?Quadratic Programming,erature and sequential quadratic programming approaches. The proposed method is evaluated on numerous constrained optimization tasks from simple low dimensional problems to high dimensional realistic trajectory optimization scenarios, and showcase that is able to outperform other evolutionary algori
34#
發(fā)表于 2025-3-27 11:40:30 | 只看該作者
Hierarchical Machine Unlearning,ing are still not widely used due to model applicability, usage overhead, etc. Based on this situation, we propose a novel hierarchical learning method, Hierarchical Machine Unlearning (HMU), with the known distribution of unlearning requests. Compared with previous methods, ours has better efficien
35#
發(fā)表于 2025-3-27 13:59:53 | 只看該作者
36#
發(fā)表于 2025-3-27 19:09:56 | 只看該作者
,Generative Models via?Optimal Transport and?Gaussian Processes,that, for a given input, it provides both a prediction and the associated uncertainty. Thus, the generative properties are, by design, guaranteed by sampling the generated element around the prediction and depending on the uncertainty. Results on both toy examples and a dataset of images are provide
37#
發(fā)表于 2025-3-27 22:33:37 | 只看該作者
,Real-World Streaming Process Discovery from?Low-Level Event Data,tes (i.e., case, activity and timestamp) are known, and apply unscaled discovery techniques to produce control-flow process models. In this research, we propose an original approach we have designed and deployed to mine processes of businesses. It features fully streamed and real-time techniques to
38#
發(fā)表于 2025-3-28 04:00:32 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:38 | 只看該作者
,Heuristics Selection with?ML in?CP Optimizer, of diverse benchmark problems that is used to evaluate and document CPO performance before each release. This work also addresses two methodological challenges: the ability of the trained predictive models to robustly generalize to the diverse set of problems that may be encountered in practice, an
40#
發(fā)表于 2025-3-28 11:29:49 | 只看該作者
,Model-Based Feature Selection for?Neural Networks: A Mixed-Integer Programming Approach,lly reduce the size of the input to .15% while maintaining a good classification accuracy. This allows us to design DNNs with significantly fewer connections, reducing computational effort and producing DNNs that are more robust towards adversarial attacks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潍坊市| 延川县| 哈尔滨市| 广饶县| 嘉义市| 丹巴县| 望江县| 荣成市| 左云县| 西安市| 封丘县| 察隅县| 缙云县| 宜宾县| 鹤岗市| 聂拉木县| 荥阳市| 大埔区| 建阳市| 新和县| 珲春市| 彰化县| 汪清县| 永嘉县| 随州市| 罗平县| 玉屏| 大厂| 张北县| 陵川县| 穆棱市| 昌图县| 巴彦淖尔市| 文登市| 南京市| 清丰县| 张家界市| 左云县| 洛川县| 咸宁市| 南乐县|