找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Learning Theory; 18th Annual Conferen Peter Auer,Ron Meir Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Boosting.Suppo

[復(fù)制鏈接]
樓主: 技巧
51#
發(fā)表于 2025-3-30 10:29:26 | 只看該作者
Stability and Generalization of Bipartite Ranking Algorithmsn bounds for ranking, which are based on uniform convergence and in many cases cannot be applied to these algorithms. A comparison of the bounds we obtain with corresponding bounds for classification algorithms yields some interesting insights into the difference in generalization behaviour between ranking and classification.
52#
發(fā)表于 2025-3-30 13:16:52 | 只看該作者
53#
發(fā)表于 2025-3-30 17:11:30 | 只看該作者
Conference proceedings 2005ning Theory) held in Bertinoro, Italy from June 27 to 30, 2005. The technical program contained 45 papers selected from 120 submissions, 3 open problems selected from among 5 contributed, and 2 invited lectures. The invited lectures were given by Sergiu Hart on “Uncoupled Dynamics and Nash Equilibri
54#
發(fā)表于 2025-3-30 23:32:20 | 只看該作者
A New Perspective on an Old Perceptron Algorithmlgorithm in the inseparable case. We describe a multiclass extension of the algorithm. This extension is used in an experimental evaluation in which we compare the proposed algorithm to the Perceptron algorithm.
55#
發(fā)表于 2025-3-31 03:40:07 | 只看該作者
56#
發(fā)表于 2025-3-31 08:06:23 | 只看該作者
Ranking and Scoring Using Empirical Risk Minimizationking algorithms based on boosting and support vector machines. Just like in binary classification, fast rates of convergence are achieved under certain noise assumption. General sufficient conditions are proposed in several special cases that guarantee fast rates of convergence.
57#
發(fā)表于 2025-3-31 12:35:33 | 只看該作者
Loss Bounds for Online Category Rankingounds for the algorithms by using the properties of the dual solution while imposing additional constraints on the dual form. Finally, we outline and analyze the convergence of a general update that can be employed with any Bregman divergence.
58#
發(fā)表于 2025-3-31 15:30:03 | 只看該作者
The Value of Agreement, a New Boosting Algorithmearners will result in a larger improvement whereas using two copies of a single algorithm gives no advantage at all. As a proof of concept, we apply the algorithm, named AgreementBoost, to a web classification problem where an up to 40% reduction in the number of labeled examples is obtained.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 化隆| 平谷区| 渝中区| 化隆| 华容县| 山阳县| 清远市| 顺义区| 偃师市| 卢龙县| 和政县| 岳池县| 嘉兴市| 屏山县| 康平县| 克什克腾旗| 通渭县| 贞丰县| 铜陵市| 新竹县| 敦煌市| 尼木县| 通化县| 兴业县| 藁城市| 色达县| 额济纳旗| 固安县| 阳山县| 年辖:市辖区| 读书| 郎溪县| 周至县| 牡丹江市| 巍山| 阳城县| 琼中| 虎林市| 西平县| 德江县|