找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning Theory; 18th Annual Conferen Peter Auer,Ron Meir Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 2005 Boosting.Suppo

[復(fù)制鏈接]
樓主: 技巧
11#
發(fā)表于 2025-3-23 10:36:39 | 只看該作者
Stability and Generalization of Bipartite Ranking Algorithmscently gained attention in machine learning. We study generalization properties of ranking algorithms, in a particular setting of the ranking problem known as the bipartite ranking problem, using the notion of algorithmic stability.In particular, we derive generalization bounds for bipartite ranking
12#
發(fā)表于 2025-3-23 16:25:24 | 只看該作者
Loss Bounds for Online Category Rankinggorithms for . category ranking where the instances are revealed in a sequential manner. We describe additive and multiplicative updates which constitute the core of the learning algorithms. The updates are derived by casting a constrained optimization problem for each new instance. We derive loss b
13#
發(fā)表于 2025-3-23 19:33:06 | 只看該作者
Margin-Based Ranking Meets Boosting in the Middlee. Our bound suggests that algorithms that maximize the ranking margin generalize well..We then describe a new algorithm, Smooth Margin Ranking, that precisely converges to a maximum ranking-margin solution. The algorithm is a modification of RankBoost, analogous to Approximate Coordinate Ascent Boo
14#
發(fā)表于 2025-3-24 00:47:51 | 只看該作者
The Value of Agreement, a New Boosting Algorithmfier’s quality and thus reduce the number of labeled examples necessary for achieving it. This is achieved by demanding from the algorithms generating the classifiers to agree on the unlabeled examples. The extent of this improvement depends on the diversity of the learners—a more diverse group of l
15#
發(fā)表于 2025-3-24 03:17:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:04:46 | 只看該作者
Generalization Error Bounds Using Unlabeled Dataement probability of pairs of classifiers using unlabeled data. The first method works in the realizable case. It suggests how the ERM principle can be refined using unlabeled data and has provable optimality guarantees when the number of unlabeled examples is large. Furthermore, the technique exten
17#
發(fā)表于 2025-3-24 14:09:16 | 只看該作者
On the Consistency of Multiclass Classification Methodsproperty of Bayes consistency. We provide a necessary and sufficient condition for consistency which applies to a large class of multiclass classification methods. The approach is illustrated by applying it to some multiclass methods proposed in the literature.
18#
發(fā)表于 2025-3-24 16:03:23 | 只看該作者
19#
發(fā)表于 2025-3-24 20:10:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:24 | 只看該作者
Tracking the Best of Many Experts provided that the set of experts has a certain structure allowing efficient implementations of the exponentially weighted average predictor. As an example we work out the case where each expert is represented by a path in a directed graph and the loss of each expert is the sum of the weights over t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黔南| 乐安县| 保康县| 南阳市| 松江区| 临邑县| 双柏县| 凤翔县| 和政县| 南岸区| 越西县| 汕尾市| 宜黄县| 普陀区| 潞西市| 祁东县| 霍山县| 富民县| 仁布县| 阳原县| 阜平县| 寿光市| 塔城市| 临泉县| 贵港市| 墨竹工卡县| 全州县| 名山县| 南木林县| 灵石县| 南昌县| 汕尾市| 那曲县| 司法| 肥乡县| 呼伦贝尔市| 九龙城区| 台州市| 娄底市| 都匀市| 白银市|