找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Concepts of Module Theory; Grigore C?lug?reanu Book 2000 Springer Science+Business Media Dordrecht 2000 Group theory.Lattice.algeb

[復(fù)制鏈接]
樓主: Herbaceous
31#
發(fā)表于 2025-3-27 01:02:56 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:37 | 只看該作者
Grigore C?lug?reanuechniques in the way of their simplicity of use, and rapid and real-time display of whole-field phase maps accompanied by fast quantitative evaluation of these contours. Given these powerful attributes, we can confidently expect holographicand speckle techniques to not only continue to grow and deve
33#
發(fā)表于 2025-3-27 07:31:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:56:20 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:28:31 | 只看該作者
Lattice Concepts of Module Theory978-94-015-9588-9Series ISSN 0927-4529
37#
發(fā)表于 2025-3-27 23:23:34 | 只看該作者
Texts in the Mathematical Scienceshttp://image.papertrans.cn/l/image/581930.jpg
38#
發(fā)表于 2025-3-28 03:41:16 | 只看該作者
https://doi.org/10.1007/978-94-015-9588-9Group theory; Lattice; algebra; torsion
39#
發(fā)表于 2025-3-28 06:51:24 | 只看該作者
Basic notions and results,.. A system (.., .., ..., ..; .) with .. 1 ≤ . ≤ . arbitrary sets and . ? .. × .. × ... × .. is called an . between the elements of these sets. If .. = .. = ... = .. = . the relation (., ., ..., .; .) is called . and if . = 2 it is called binary.
40#
發(fā)表于 2025-3-28 11:33:37 | 只看該作者
Compactly generated lattices,. (Nachbin, Stenstr?m) An element . of a complete lattice . is called . if for every subset . of . and . ≤ ∨ . there is a finite subset . ? . such that . ≤ ∨ . and . if for each upper directed subset . ? . and . ≤ ∨ . there is an element .. ? . such that . ≤ ...
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汾阳市| 普定县| 夏邑县| 离岛区| 炎陵县| 嘉祥县| 肥西县| 达拉特旗| 额济纳旗| 阿鲁科尔沁旗| 绥芬河市| 唐海县| 兴文县| 朝阳区| 青神县| 元氏县| 阳谷县| 泸定县| 高尔夫| 宜春市| 仲巴县| 大石桥市| 毕节市| 同心县| 肥西县| 木兰县| 佛山市| 雷波县| 东兴市| 武安市| 调兵山市| 吴堡县| 怀远县| 东安县| 中江县| 永福县| 天津市| 凤山县| 阿拉善右旗| 新绛县| 黄浦区|