找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale and Distributed Optimization; Pontus Giselsson,Anders Rantzer Book 2018 Springer Nature Switzerland AG 2018 Large-Scale Optimi

[復(fù)制鏈接]
樓主: 復(fù)雜
11#
發(fā)表于 2025-3-23 11:50:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:32:22 | 只看該作者
Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework, and two nonsmooth proximable functions, one of which is composed with a linear mapping. The framework is based on the recently proposed asymmetric forward-backward-adjoint three-term splitting (AFBA); depending on the value of two parameters, (extensions of) known algorithms as well as many new pri
13#
發(fā)表于 2025-3-23 19:49:26 | 只看該作者
14#
發(fā)表于 2025-3-24 00:19:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:21:31 | 只看該作者
Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints,hods to solve such problems in different situations: smooth or non-smooth objective function; convex or strongly convex objective and constraint; deterministic or randomized information about the objective and constraint. Described methods are based on Mirror Descent algorithm and switching subgradi
16#
發(fā)表于 2025-3-24 08:20:40 | 只看該作者
Frank-Wolfe Style Algorithms for Large Scale Optimization,rithm using stochastic gradients, approximate subproblem solutions, and sketched decision variables in order to scale to enormous problems while preserving (up to constants) the optimal convergence rate ..
17#
發(fā)表于 2025-3-24 13:27:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:46:14 | 只看該作者
Communication-Efficient Distributed Optimization of Self-concordant Empirical Loss,ization in machine learning. We assume that each machine in the distributed computing system has access to a local empirical loss function, constructed with i.i.d. data sampled from a common distribution. We propose a communication-efficient distributed algorithm to minimize the overall empirical lo
19#
發(fā)表于 2025-3-24 19:47:01 | 只看該作者
20#
發(fā)表于 2025-3-24 23:29:07 | 只看該作者
Convergence of an Inexact Majorization-Minimization Method for Solving a Class of Composite Optimizy constructed . of the objective function. We describe a variety of classes of functions for which such a construction is possible. We introduce an inexact variant of the method, in which only approximate minimization of the consistent majorizer is performed at each iteration. Both the exact and the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
木兰县| 荔波县| 金溪县| 金沙县| 呼伦贝尔市| 丰原市| 丰台区| 富民县| 静宁县| 长顺县| 镇巴县| 清新县| 闽清县| 双江| 内黄县| 论坛| 炎陵县| 镇安县| 嘉善县| 乐山市| 都安| 安远县| 修水县| 罗甸县| 美姑县| 闻喜县| 石门县| 盈江县| 松桃| 如皋市| 阳西县| 蓝田县| 江川县| 山丹县| 邻水| 鄯善县| 民和| 铜川市| 济南市| 康乐县| 资中县|