找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large-Scale Data Analytics; Aris Gkoulalas-Divanis,Abderrahim‘Labbi Book 2014 Springer Science+Business Media New York 2014 Big data.GPU p

[復制鏈接]
查看: 38592|回復: 44
樓主
發(fā)表于 2025-3-21 19:45:55 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Large-Scale Data Analytics
編輯Aris Gkoulalas-Divanis,Abderrahim‘Labbi
視頻videohttp://file.papertrans.cn/582/581385/581385.mp4
概述Provides cutting-edge research in large-scale data analytics from diverse scientific areas.Surveys varied subject areas and reports on individual results of research in the field.Shares many tips and
圖書封面Titlebook: Large-Scale Data Analytics;  Aris Gkoulalas-Divanis,Abderrahim‘Labbi Book 2014 Springer Science+Business Media New York 2014 Big data.GPU p
描述.This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputing, hardware architecture, data visualization, statistics, and privacy..There is increasing need for new approaches and technologies that can analyze and synthesize very large amounts of data, in the order of petabytes, that are generated by massively distributed data sources. This requires new distributed architectures for data analysis. Additionally, the heterogeneity of such sources imposes significant challenges for the efficient analysis of the data under numerous constraints, including consistent data integration, data homogenization and scaling, privacy and security preservation. The authors also broaden reader understanding of emerging real-world applications in domains such as customer behavior modeling, graph mining, telecommunications, cyber-security, and social network analysis, all of which impose extra requirements for large-scale data analysis..Large-Scale Data Analytics.
出版日期Book 2014
關鍵詞Big data; GPU programming; data mining; graph mining; hardware acceleration; high performance computing; l
版次1
doihttps://doi.org/10.1007/978-1-4614-9242-9
isbn_softcover978-1-4939-4225-1
isbn_ebook978-1-4614-9242-9
copyrightSpringer Science+Business Media New York 2014
The information of publication is updating

書目名稱Large-Scale Data Analytics影響因子(影響力)




書目名稱Large-Scale Data Analytics影響因子(影響力)學科排名




書目名稱Large-Scale Data Analytics網(wǎng)絡公開度




書目名稱Large-Scale Data Analytics網(wǎng)絡公開度學科排名




書目名稱Large-Scale Data Analytics被引頻次




書目名稱Large-Scale Data Analytics被引頻次學科排名




書目名稱Large-Scale Data Analytics年度引用




書目名稱Large-Scale Data Analytics年度引用學科排名




書目名稱Large-Scale Data Analytics讀者反饋




書目名稱Large-Scale Data Analytics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:54:51 | 只看該作者
Large-Scale Social Network Analysis,thms and libraries. In this chapter we provide an overview of the state of the art in the field of large scale social network analysis; in particular, we focus on parallel algorithms and libraries for the computation of network centrality metrics.
板凳
發(fā)表于 2025-3-22 00:45:51 | 只看該作者
地板
發(fā)表于 2025-3-22 07:04:33 | 只看該作者
The Family of Map-Reduce, a comprehensive survey for a family of approaches and mechanisms of large scale data analysis that have been implemented based on the original father idea of the MapReduce framework, and are currently gaining a lot of momentum in both research and industrial communities. Some case studies are discussed as well.
5#
發(fā)表于 2025-3-22 12:19:31 | 只看該作者
6#
發(fā)表于 2025-3-22 14:17:02 | 只看該作者
7#
發(fā)表于 2025-3-22 19:45:31 | 只看該作者
8#
發(fā)表于 2025-3-22 23:55:20 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:28 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵定县| 怀远县| 安多县| 鲁甸县| 湘西| 岑溪市| 平潭县| 古交市| 商河县| 鱼台县| 黑山县| 福安市| 平果县| 卢氏县| 双城市| 康马县| 驻马店市| 濉溪县| 崇州市| 左云县| 辉县市| 盈江县| 虹口区| 延长县| 诸暨市| 安宁市| 宽甸| 迁安市| 合肥市| 渑池县| 长沙县| 合川市| 东乡族自治县| 育儿| 无锡市| 上栗县| 大竹县| 云南省| 双柏县| 贵德县| 宝坻区|