找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Scale Dynamics of Interacting Particles; Herbert Spohn Book 1991 Springer-Verlag Berlin Heidelberg 1991 Boltzmann equation.Brownian

[復(fù)制鏈接]
查看: 34515|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:09:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Large Scale Dynamics of Interacting Particles
編輯Herbert Spohn
視頻videohttp://file.papertrans.cn/582/581354/581354.mp4
叢書名稱Theoretical and Mathematical Physics
圖書封面Titlebook: Large Scale Dynamics of Interacting Particles;  Herbert Spohn Book 1991 Springer-Verlag Berlin Heidelberg 1991 Boltzmann equation.Brownian
描述This book deals with one of the fundamental problems of nonequilibrium statistical mechanics: the explanation of large-scale dynamics (evolution differential equations) from models of a very large number of interacting particles. This book addresses both researchers and students. Much of the material presented has never been published in book-form before.
出版日期Book 1991
關(guān)鍵詞Boltzmann equation; Brownian motion; Ma?; Rang; diffusion; entropy; equilibrium; invariant; law of large num
版次1
doihttps://doi.org/10.1007/978-3-642-84371-6
isbn_softcover978-3-642-84373-0
isbn_ebook978-3-642-84371-6Series ISSN 1864-5879 Series E-ISSN 1864-5887
issn_series 1864-5879
copyrightSpringer-Verlag Berlin Heidelberg 1991
The information of publication is updating

書目名稱Large Scale Dynamics of Interacting Particles影響因子(影響力)




書目名稱Large Scale Dynamics of Interacting Particles影響因子(影響力)學(xué)科排名




書目名稱Large Scale Dynamics of Interacting Particles網(wǎng)絡(luò)公開度




書目名稱Large Scale Dynamics of Interacting Particles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Large Scale Dynamics of Interacting Particles被引頻次




書目名稱Large Scale Dynamics of Interacting Particles被引頻次學(xué)科排名




書目名稱Large Scale Dynamics of Interacting Particles年度引用




書目名稱Large Scale Dynamics of Interacting Particles年度引用學(xué)科排名




書目名稱Large Scale Dynamics of Interacting Particles讀者反饋




書目名稱Large Scale Dynamics of Interacting Particles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:16:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:02:50 | 只看該作者
5#
發(fā)表于 2025-3-22 12:03:14 | 只看該作者
Nonequilibrium Dynamics for Reversible Lattice Gasesature situation and assume the potential for . to be sufficiently small such that the exponential mixing (1.39) holds over the full range of densities, cf. Theorem 1.8 for an explicit condition.) It is natural to take thermal equilibrium as our starting point. The distribution of particles in the box . ? ?. with uniform density is then given by
6#
發(fā)表于 2025-3-22 16:00:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:39 | 只看該作者
Stochastic Models with a Single Conservation Law Other than Lattice Gasese than lattice gases either mathematically or merely on a computational level. E.g. mode-coupling and dynamical renormalization close to a point of second order phase transition have been carried through almost exclusively in the context of Ginzburg-Landau models.
8#
發(fā)表于 2025-3-22 22:25:28 | 只看該作者
Book 1991rential equations) from models of a very large number of interacting particles. This book addresses both researchers and students. Much of the material presented has never been published in book-form before.
9#
發(fā)表于 2025-3-23 03:21:52 | 只看該作者
https://doi.org/10.1007/978-3-642-84371-6Boltzmann equation; Brownian motion; Ma?; Rang; diffusion; entropy; equilibrium; invariant; law of large num
10#
發(fā)表于 2025-3-23 09:13:51 | 只看該作者
Theoretical and Mathematical Physicshttp://image.papertrans.cn/l/image/581354.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
军事| 砚山县| 武宁县| 建平县| 南宫市| 阜平县| 和静县| 龙井市| 罗平县| 舟山市| 隆林| 德江县| 衡山县| 平遥县| 梧州市| 舒城县| 贵阳市| 正定县| 江山市| 赣榆县| 晋州市| 武乡县| 南乐县| 甘德县| 武平县| 新密市| 原阳县| 夏津县| 个旧市| 惠州市| 定西市| 西宁市| 雅江县| 司法| 玉田县| 安平县| 繁峙县| 宁武县| 赫章县| 于都县| 南靖县|