找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Large Language Models in Cybersecurity; Threats, Exposure an Andrei Kucharavy,Octave Plancherel,Vincent Lenders Book‘‘‘‘‘‘‘‘ 2024 The Edito

[復制鏈接]
樓主: risky-drinking
11#
發(fā)表于 2025-3-23 11:02:03 | 只看該作者
Adapting LLMs to Downstream Applicationsds is provided, specifically the prompt optimization, pre-prompting and implicit prompting (system prompting), model coordination through actor agents, integration with auxiliary tools, parameter-efficient fine-tuning, further model pre-training, from-scratch retraining, and finally domain-specific distillation.
12#
發(fā)表于 2025-3-23 15:44:43 | 只看該作者
Phishing and Social Engineering in the Age of LLMse a comprehensive look, examining how AI technology orchestrates a phishing attack posing as a typical e-commerce transaction and how an LLM was used in a romance-themed cryptocurrency scam. Both scenarios underline the need for increased awareness and improved defenses against these novel and sophisticated cyber threats.
13#
發(fā)表于 2025-3-23 21:39:55 | 只看該作者
14#
發(fā)表于 2025-3-24 01:08:32 | 只看該作者
Tasks for LLMs and Their Evaluationng, Reasoning, and Text Generation. While LLMs have shown promising results, in particular as general models, their capabilities vary depending on their architecture, training dataset, and the nature of the task. We will briefly define the natural language tasks and give an overview of LLMs’ current state of the art.
15#
發(fā)表于 2025-3-24 03:14:32 | 只看該作者
16#
發(fā)表于 2025-3-24 10:26:08 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:59 | 只看該作者
18#
發(fā)表于 2025-3-24 16:51:51 | 只看該作者
19#
發(fā)表于 2025-3-24 20:53:44 | 只看該作者
Overview of Existing LLM FamiliesWhile the general public discovered . (LLMs) with ChatGPT—a generative autoregressive model, they are far from the only models in the LLM family. Various architectures and training regiments optimized for specific usages were designed throughout their development, which were then classified as different LLM families.
20#
發(fā)表于 2025-3-25 01:25:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
黄大仙区| 建昌县| 子长县| 大石桥市| 武强县| 绥阳县| 岗巴县| 丘北县| 天门市| 贡觉县| 都江堰市| 名山县| 阳谷县| 化德县| 兴国县| 丰县| 澄城县| 宁南县| 沙湾县| 万山特区| 香港| 建阳市| 容城县| 措勤县| 杭锦后旗| 裕民县| 鲜城| 辉县市| 景洪市| 中西区| 伽师县| 封丘县| 新乡市| 米易县| 城市| 建昌县| 来安县| 通许县| 永福县| 尼木县| 水城县|