找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Laplacian Eigenvectors of Graphs; Perron-Frobenius and Türker Biyiko?u,Josef Leydold,Peter F. Stadler Book 2007 Springer-Verlag Berlin Heid

[復制鏈接]
查看: 47560|回復: 36
樓主
發(fā)表于 2025-3-21 18:50:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Laplacian Eigenvectors of Graphs
副標題Perron-Frobenius and
編輯Türker Biyiko?u,Josef Leydold,Peter F. Stadler
視頻videohttp://file.papertrans.cn/582/581310/581310.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Laplacian Eigenvectors of Graphs; Perron-Frobenius and Türker Biyiko?u,Josef Leydold,Peter F. Stadler Book 2007 Springer-Verlag Berlin Heid
描述.Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schr?dinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) “Geometric” properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors...The volume investigates the structure of eigenvectors and looks at the number of their sign graphs (“nodal domains”), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology..
出版日期Book 2007
關鍵詞Eigenvector; Graph; Perron-Frobenius Theorem; algorithms; discrete Dirichlet problem; graph Laplacian; nod
版次1
doihttps://doi.org/10.1007/978-3-540-73510-6
isbn_softcover978-3-540-73509-0
isbn_ebook978-3-540-73510-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Laplacian Eigenvectors of Graphs影響因子(影響力)




書目名稱Laplacian Eigenvectors of Graphs影響因子(影響力)學科排名




書目名稱Laplacian Eigenvectors of Graphs網(wǎng)絡公開度




書目名稱Laplacian Eigenvectors of Graphs網(wǎng)絡公開度學科排名




書目名稱Laplacian Eigenvectors of Graphs被引頻次




書目名稱Laplacian Eigenvectors of Graphs被引頻次學科排名




書目名稱Laplacian Eigenvectors of Graphs年度引用




書目名稱Laplacian Eigenvectors of Graphs年度引用學科排名




書目名稱Laplacian Eigenvectors of Graphs讀者反饋




書目名稱Laplacian Eigenvectors of Graphs讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:21:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:48:58 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:20 | 只看該作者
Nodal Domain Theorems for Special Graph Classes,not be improved without further restrictions. On the other hand, we have seen that there exist graphs where this bound is not sharp. In general it is unknown, whether this upper bound is sharp for an arbitrary graph. The situation is similar for the (trivial) lower bound in Thm. 3.33. Furthermore, n
5#
發(fā)表于 2025-3-22 10:19:30 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:28 | 只看該作者
7#
發(fā)表于 2025-3-22 20:39:37 | 只看該作者
8#
發(fā)表于 2025-3-23 00:44:51 | 只看該作者
978-3-540-73509-0Springer-Verlag Berlin Heidelberg 2007
9#
發(fā)表于 2025-3-23 03:55:03 | 只看該作者
10#
發(fā)表于 2025-3-23 08:12:02 | 只看該作者
https://doi.org/10.1007/978-3-540-73510-6Eigenvector; Graph; Perron-Frobenius Theorem; algorithms; discrete Dirichlet problem; graph Laplacian; nod
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
老河口市| 出国| 凤冈县| 峡江县| 河曲县| 铜川市| 平江县| 漳州市| 甘泉县| 沙雅县| 江川县| 六枝特区| 青河县| 遵义市| 长沙市| 临沧市| 平山县| 阳信县| 连云港市| 台安县| 白玉县| 上杭县| 蕉岭县| 德保县| 鄢陵县| 镇巴县| 佛冈县| 漳浦县| 筠连县| 汉寿县| 通山县| 大港区| 桐乡市| 盐边县| 和龙市| 黔江区| 故城县| 莱阳市| 贺州市| 永福县| 莎车县|