找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Language and Illumination; Studies in the Histo S. Morris Engel Book 1969 Springer Netherlands 1969 Friedrich Nietzsche.Immanuel Kant.John

[復制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 21:44:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:34 | 只看該作者
On the “Composition” of the Critique: A Brief Commente subject in his writings. Of the former the two most important items are his letters to Mendelssohn (dated August 16th, 1783) and Garve (dated August 7th, 1783); of the latter the most significant item is the account he gives of its composition in the Preface to the First Edition (A xviii). But des
33#
發(fā)表于 2025-3-27 05:36:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:28:43 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 17:02:01 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:31:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:54:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:52 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
39#
發(fā)表于 2025-3-28 08:21:53 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
40#
發(fā)表于 2025-3-28 13:06:23 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
屏南县| 西乡县| 永靖县| 汉川市| 修文县| 柳河县| 油尖旺区| 金乡县| 砚山县| 体育| 来凤县| 平原县| 临汾市| 阿克苏市| 马关县| 满洲里市| 汝南县| 武邑县| 博罗县| 寿阳县| 乡宁县| 桃源县| 玛曲县| 女性| 南部县| 贡嘎县| 迁安市| 莫力| 牡丹江市| 莱芜市| 荥经县| 平昌县| 出国| 金昌市| 陕西省| 河北省| 缙云县| 措勤县| 景泰县| 炉霍县| 全椒县|