找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Language and Illumination; Studies in the Histo S. Morris Engel Book 1969 Springer Netherlands 1969 Friedrich Nietzsche.Immanuel Kant.John

[復制鏈接]
樓主: Reagan
31#
發(fā)表于 2025-3-26 21:44:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:38:34 | 只看該作者
On the “Composition” of the Critique: A Brief Commente subject in his writings. Of the former the two most important items are his letters to Mendelssohn (dated August 16th, 1783) and Garve (dated August 7th, 1783); of the latter the most significant item is the account he gives of its composition in the Preface to the First Edition (A xviii). But des
33#
發(fā)表于 2025-3-27 05:36:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:28:43 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
35#
發(fā)表于 2025-3-27 17:02:01 | 只看該作者
Examples include geodesics, harmonic functions, complex analytic mappings between suitable (e.g. Miller) manifolds, the Gauss maps of constant mean curvature surfaces, and harmonic morphisms, these last being maps which preserve Laplace’s equation. The Euler-Lagrange equations for a harmonic map (th
36#
發(fā)表于 2025-3-27 20:31:27 | 只看該作者
37#
發(fā)表于 2025-3-28 00:54:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:19:52 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
39#
發(fā)表于 2025-3-28 08:21:53 | 只看該作者
sics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
40#
發(fā)表于 2025-3-28 13:06:23 | 只看該作者
S. Morris Engelsics under the name of chiral fields [9]. These are maps with values in nonlinear manifolds such as Lie groups, Grassmannians, projective spaces, spheres, Stiefel manifolds, etc; therefore the equations defining these maps are nonlinear. The two-dimensional case can be solved exactly (with the excep
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 23:25
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
象山县| 东乡族自治县| 永安市| 文昌市| 墨竹工卡县| 慈溪市| 巨鹿县| 红桥区| 夏邑县| 互助| 舒城县| 泰州市| 西昌市| 太谷县| 瑞金市| 昭通市| 庄河市| 嘉禾县| 固原市| 奉化市| 浦东新区| 潼南县| 民丰县| 临颍县| 广平县| 繁昌县| 蒲城县| 乌鲁木齐市| 上饶市| 永顺县| 龙山县| 顺昌县| 甘孜县| 汝南县| 临邑县| 丹阳市| 宕昌县| 绥中县| 临西县| 金堂县| 县级市|