找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Landscapes of Time-Frequency Analysis; ATFA 2019 Paolo Boggiatto,Tommaso Bruno,Maria Vallarino Book 2020 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
樓主: 日月等
31#
發(fā)表于 2025-3-26 21:14:13 | 只看該作者
The Shearlet Transform and Lizorkin Spaces,ents. We define the dual shearlet transform, called here the shearlet synthesis operator, and we prove its continuity on the space of smooth and rapidly decreasing functions over .. Then, we use these continuity results to extend the shearlet transform to the space of Lizorkin distributions via the
32#
發(fā)表于 2025-3-27 03:44:02 | 只看該作者
,Time–Frequency Localization Operators: State of the Art,about boundedness and Schatten-von Neumann class are reported. Asymptotic eigenvalues’ distribution and decay and smoothness properties for ..-eigenfunctions are exhibited. Eventually, we make a conjecture about smoothness of ..-eigenfunctions for localization operators with Gelfand–Shilov windows a
33#
發(fā)表于 2025-3-27 06:57:29 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:26 | 只看該作者
Some Notes About Distribution Frame Multipliers,y of its main properties is carried on. In particular, conditions for the density of domain and boundedness are given. The case of Riesz distribution bases is examined in order to develop a symbolic calculus.
35#
發(fā)表于 2025-3-27 15:20:19 | 只看該作者
Generalized Anti-Wick Quantum States,ion is to define and study a subclass of density operators on ., which we call Toeplitz density operators. They correspond to quantum states obtained from a fixed function (“window”) by position-momentum translations, and reduce in the simplest case to the anti-Wick operators considered long ago by
36#
發(fā)表于 2025-3-27 18:55:40 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:08 | 只看該作者
Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature,y and in vivo using well-established techniques of fundus photography. Since the treatment of these diseases can be significantly improved with early detection, methods for the quantitative analysis of fundus imaging have been the subject of extensive studies. Following major advances in image proce
38#
發(fā)表于 2025-3-28 05:51:32 | 只看該作者
,A Time–Frequency Analysis Perspective on Feynman Path Integrals,ing the mathematical theory of Feynman path integrals. We hope to draw the interest of mathematicians working in time–frequency analysis on this topic, as well as to illustrate the benefits of this fruitful interplay for people working on path integrals.
39#
發(fā)表于 2025-3-28 08:41:04 | 只看該作者
ispiele aufgezeigt, wie Unternehmen ihre strategische Ausrichtung in der Beschaffung und im Umgang mit den Mitarbeitern der Zukunft gestalten k?nnen. Um die Strategien und Ziele im Personalmanagement systematisch überprüfen und weiterentwickeln zu k?nnen, wurde innerhalb der Deutsche Bank AG und der
40#
發(fā)表于 2025-3-28 11:01:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
根河市| 平邑县| 瑞金市| 灵武市| 肥西县| 大丰市| 五大连池市| 漳浦县| 武清区| 酒泉市| 新泰市| 轮台县| 田东县| 绥中县| 息烽县| 咸丰县| 公主岭市| 香河县| 万山特区| 昌宁县| 五大连池市| 蕲春县| 鸡泽县| 呼玛县| 会理县| 顺平县| 泗水县| 罗山县| 九寨沟县| 科技| 万载县| 万州区| 志丹县| 广平县| 和平区| 南汇区| 通许县| 宝兴县| 中宁县| 南溪县| 贡觉县|