找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs; Jane K. Cullum,Ralph A. Willoughby Book 1985 Springer Sci

[復(fù)制鏈接]
樓主: arouse
31#
發(fā)表于 2025-3-26 23:34:58 | 只看該作者
32#
發(fā)表于 2025-3-27 03:19:40 | 只看該作者
Factored Inverses of Real Symmetric Matrices,applying a single-vector Lanczos procedure to the inverse of an associated matrix B ≡ PCP., where C = S0*A + SHIFT*I. The scalars S0 and SHIFT are specified by the user, selected in such a way that the resulting matrix C (or B) has a reasonable numerical condition. The permutation matrix P is chosen
33#
發(fā)表于 2025-3-27 08:05:08 | 只看該作者
34#
發(fā)表于 2025-3-27 10:47:38 | 只看該作者
Real Rectangular Matrices, rectangular matrices, using a single-vector Lanczos procedure. For a given real rectangular ? × n matrix A, these codes compute nonnegative scalars . and corresponding real vectors x ≠ 0 and y ≠ 0 such that . Every real rectangular ?xn matrix, where ? . n, has a singular value decomposition, . wher
35#
發(fā)表于 2025-3-27 17:08:53 | 只看該作者
Nondefective Complex Symmetric Matrices, using a single-vector Lanczos procedure. For a given nondefective, complex symmetric matrix A, these codes compute complex scalars à and corresponding complex vectors x ≠ 0 such that . . A complex nxn matrix A ≡ (a.), 1 ≤ i,j ≤ n, is complex symmetric if and only if for every i and j, a. = a.. A co
36#
發(fā)表于 2025-3-27 18:43:43 | 只看該作者
37#
發(fā)表于 2025-3-27 22:58:04 | 只看該作者
978-1-4684-9180-7Springer Science+Business Media New York 1985
38#
發(fā)表于 2025-3-28 03:16:53 | 只看該作者
Overview: 978-1-4684-9180-7978-1-4684-9178-4
39#
發(fā)表于 2025-3-28 10:04:06 | 只看該作者
https://doi.org/10.1007/978-1-4684-9178-4Eigenvalue; Factor; Fortran; Matrix; Processing; algorithms; code; computation; documentation; eigenvector; ma
40#
發(fā)表于 2025-3-28 11:31:37 | 只看該作者
Real Symmetric Matrices,ing a single-vector Lanczos procedure. For a given real symmetric matrix A, these codes compute real scalars λ and corresponding real vectors x ≠ 0, such that . DEFINITION 2.1.1 A real nxn matrix A = (a.), 1 ≤ i,j ≤ n, is a real symmetric matrix if and only if for every i and j, a. = a..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贡觉县| 嘉禾县| 西青区| 上犹县| 英超| 大连市| 罗甸县| 平原县| 铁岭市| 徐州市| 凤阳县| 东丽区| 饶平县| 新竹县| 拉孜县| 林口县| 龙里县| 唐海县| 云安县| 禄劝| 临安市| 西林县| 南涧| 乌苏市| 南汇区| 平乐县| 嘉峪关市| 临朐县| 云阳县| 武山县| 高安市| 新兴县| 麻江县| 红桥区| 宝坻区| 尚志市| 芜湖市| 樟树市| 寿光市| 城步| 行唐县|