找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lagerungen; Arrangements in the László Fejes Tóth,Gábor Fejes Tóth,W?odzimierz Kup Book 20231st edition The Editor(s) (if applicable) and

[復制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 15:27:01 | 只看該作者
Extremal Properties of Regular Polyhedrapolyhedra play a special role. However, since for example in the densest packing of 12 congruent circles on the sphere, their planes bound a regular dodecahedron, the same problems can be formulated so that the regular three-valent polyhedra play a special role.
42#
發(fā)表于 2025-3-28 19:22:39 | 只看該作者
43#
發(fā)表于 2025-3-29 02:52:31 | 只看該作者
44#
發(fā)表于 2025-3-29 04:42:49 | 只看該作者
Efficiency of Packings and Coverings with a Sequence of Convex Disksense we are interested in the opposite counterparts of the convex tiling domains. These problems appear to be quite difficult and thus far are still unsolved. In this chapter we try to take the first steps towards the solution. In Section 4.1, we solve the analogous problems for lattice-like arrangements.
45#
發(fā)表于 2025-3-29 07:50:24 | 只看該作者
Miscellaneous Problems About Packing and Coveringscribed. Which arrangement of the rectangles allows for the greatest number of houses in the area? By the inequality 3.10.1, the problem is reduced to the determination of the densest lattice packing of the parallel domain of the rectangle.
46#
發(fā)表于 2025-3-29 12:59:32 | 只看該作者
Problems on Packing and Covering in the PlaneThe problems of this chapter are either directly of this type, or are associated with these two central problems. Our main interest lies in the limit case, in which the number of the disks is infinite.
47#
發(fā)表于 2025-3-29 17:25:05 | 只看該作者
48#
發(fā)表于 2025-3-29 20:43:03 | 只看該作者
49#
發(fā)表于 2025-3-29 23:53:30 | 只看該作者
Ball Packings in Hyperbolic SpaceIt is natural to extend the study of packing and covering problems to the hyperbolic plane, as well as hyperbolic spaces of higher dimension. Research in that direction began essentially only after the original publication of this book. Research in dimensions higher than 2 was restricted to packings of balls.
50#
發(fā)表于 2025-3-30 05:52:27 | 只看該作者
Multiple ArrangementsThe literature on multiple packing and covering is relatively extensive, and it mostly deals with arrangements of congruent copies of the circular disk ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赤峰市| 罗田县| 濮阳县| 盘锦市| 喜德县| 海伦市| 广州市| 乌审旗| 莎车县| 枣庄市| 星座| 高安市| 法库县| 略阳县| 津市市| 北碚区| 文化| 镇平县| 陕西省| 定襄县| 宜阳县| 措勤县| 德昌县| 江北区| 保靖县| 水富县| 拜城县| 山阴县| 通州市| 崇州市| 武功县| 丰台区| 鄂伦春自治旗| 文昌市| 华坪县| 平塘县| 吐鲁番市| 海城市| 娱乐| 南澳县| 五莲县|