找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lagerungen; Arrangements in the László Fejes Tóth,Gábor Fejes Tóth,W?odzimierz Kup Book 20231st edition The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 15:27:01 | 只看該作者
Extremal Properties of Regular Polyhedrapolyhedra play a special role. However, since for example in the densest packing of 12 congruent circles on the sphere, their planes bound a regular dodecahedron, the same problems can be formulated so that the regular three-valent polyhedra play a special role.
42#
發(fā)表于 2025-3-28 19:22:39 | 只看該作者
43#
發(fā)表于 2025-3-29 02:52:31 | 只看該作者
44#
發(fā)表于 2025-3-29 04:42:49 | 只看該作者
Efficiency of Packings and Coverings with a Sequence of Convex Disksense we are interested in the opposite counterparts of the convex tiling domains. These problems appear to be quite difficult and thus far are still unsolved. In this chapter we try to take the first steps towards the solution. In Section 4.1, we solve the analogous problems for lattice-like arrangements.
45#
發(fā)表于 2025-3-29 07:50:24 | 只看該作者
Miscellaneous Problems About Packing and Coveringscribed. Which arrangement of the rectangles allows for the greatest number of houses in the area? By the inequality 3.10.1, the problem is reduced to the determination of the densest lattice packing of the parallel domain of the rectangle.
46#
發(fā)表于 2025-3-29 12:59:32 | 只看該作者
Problems on Packing and Covering in the PlaneThe problems of this chapter are either directly of this type, or are associated with these two central problems. Our main interest lies in the limit case, in which the number of the disks is infinite.
47#
發(fā)表于 2025-3-29 17:25:05 | 只看該作者
48#
發(fā)表于 2025-3-29 20:43:03 | 只看該作者
49#
發(fā)表于 2025-3-29 23:53:30 | 只看該作者
Ball Packings in Hyperbolic SpaceIt is natural to extend the study of packing and covering problems to the hyperbolic plane, as well as hyperbolic spaces of higher dimension. Research in that direction began essentially only after the original publication of this book. Research in dimensions higher than 2 was restricted to packings of balls.
50#
發(fā)表于 2025-3-30 05:52:27 | 只看該作者
Multiple ArrangementsThe literature on multiple packing and covering is relatively extensive, and it mostly deals with arrangements of congruent copies of the circular disk ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 象州县| 惠来县| 龙海市| 绍兴市| 建德市| 灌南县| 临泉县| 互助| 长泰县| 广元市| 南开区| 辛集市| 永德县| 上饶县| 襄城县| 阜南县| 郸城县| 镇巴县| 黄浦区| 张家界市| 庆安县| 韩城市| 嘉定区| 龙江县| 花垣县| 建始县| 江孜县| 东光县| 德安县| 勃利县| 南雄市| 米林县| 台东县| 襄樊市| 义马市| 榆树市| 和顺县| 章丘市| 财经| 汾西县|