找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Labour’s Renewal?; The Policy Review an Gerald R. Taylor Book 1997 Gerald R. Taylor 1997 assessment.economic policy.Electoral.Policy.reform

[復(fù)制鏈接]
查看: 7419|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:24:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Labour’s Renewal?
副標(biāo)題The Policy Review an
編輯Gerald R. Taylor
視頻videohttp://file.papertrans.cn/581/580384/580384.mp4
圖書封面Titlebook: Labour’s Renewal?; The Policy Review an Gerald R. Taylor Book 1997 Gerald R. Taylor 1997 assessment.economic policy.Electoral.Policy.reform
描述This is an important critical assessment of Labour‘s periods of renewal and modernisation. Beginning with an indepth analysis of the Policy Review of 1987-92, the author then considers how the lessons of this period influenced the Commission on Social Justice instigated by John Smith, and Tony Blair‘s reform of Clause IV. These events are considered as attempts to resolve traditional problems facing the Labour Party, the abiding legacy and importance of these fundamental problems is assessed.
出版日期Book 1997
關(guān)鍵詞assessment; economic policy; Electoral; Policy; reform; social justice; strategy; British Politics
版次1
doihttps://doi.org/10.1007/978-1-349-25397-5
isbn_softcover978-0-333-65248-0
isbn_ebook978-1-349-25397-5
copyrightGerald R. Taylor 1997
The information of publication is updating

書目名稱Labour’s Renewal?影響因子(影響力)




書目名稱Labour’s Renewal?影響因子(影響力)學(xué)科排名




書目名稱Labour’s Renewal?網(wǎng)絡(luò)公開度




書目名稱Labour’s Renewal?網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Labour’s Renewal?被引頻次




書目名稱Labour’s Renewal?被引頻次學(xué)科排名




書目名稱Labour’s Renewal?年度引用




書目名稱Labour’s Renewal?年度引用學(xué)科排名




書目名稱Labour’s Renewal?讀者反饋




書目名稱Labour’s Renewal?讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:52:51 | 只看該作者
provement of the algorithm performance with the novel Einstein t-norm, the selection of fuzzy tolerance relationship sometimes can have big differences on the final output model, and on some datasets, it did not have any influence whatsoever. For future work, we plan to conduct further investigation
地板
發(fā)表于 2025-3-22 08:23:27 | 只看該作者
Gerald R. Taylorodology for developing the text-to-speech engine relies on the newest and most efficient principles in Machine Learning for Natural Language Processing - a Deep Learning approach. The framework has been tested on target group of students and the satisfaction has been measured by using the standard L
5#
發(fā)表于 2025-3-22 09:50:14 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:04 | 只看該作者
Gerald R. Tayloren their cross-section is undertaken. The dataset is unbalanced concerning the records of both classes, therefore certain balancing techniques are applied. Several models are built using traditional Machine Learning models, classifiers with Deep Neural Networks and ensemble algorithms and their perf
7#
發(fā)表于 2025-3-22 17:42:16 | 只看該作者
Gerald R. Taylorprovement of the algorithm performance with the novel Einstein t-norm, the selection of fuzzy tolerance relationship sometimes can have big differences on the final output model, and on some datasets, it did not have any influence whatsoever. For future work, we plan to conduct further investigation
8#
發(fā)表于 2025-3-22 23:19:35 | 只看該作者
ne and symmetrized percent change of the volumetric measures, as well as the index of abnormality provided the best overall retrieval results. The dimensionality of the feature vector was 31–33 features in most of the cases which is significantly lower than in the case of the traditional approach (t
9#
發(fā)表于 2025-3-23 05:19:52 | 只看該作者
10#
發(fā)表于 2025-3-23 09:35:14 | 只看該作者
Gerald R. Taylororithms. To further strengthen the security, we implemented image encryption for this type of image steganography and analyzed the improvements, benefits, advantages, and disadvantages of this model in each phase of hiding/retrieving. Also, StegIm can detect hidden data in given images with the help
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普宁市| 阿拉善盟| 台山市| 西畴县| 临西县| 镇坪县| 华容县| 溧水县| 松滋市| 皋兰县| 丰城市| 青浦区| 类乌齐县| 屯昌县| 凌海市| 西安市| 新野县| 曲松县| 肇东市| 海南省| 徐水县| 平江县| 寿光市| 尖扎县| 衡阳市| 陇南市| 民县| 岳普湖县| 信阳市| 中江县| 师宗县| 泊头市| 中西区| 万荣县| 克山县| 东阳市| 东光县| 临洮县| 随州市| 深圳市| 梅州市|