找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: LATIN 2002: Theoretical Informatics; 5th Latin American S Sergio Rajsbaum Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: lumbar-puncture
31#
發(fā)表于 2025-3-26 22:39:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:22:14 | 只看該作者
33#
發(fā)表于 2025-3-27 06:13:50 | 只看該作者
34#
發(fā)表于 2025-3-27 09:39:08 | 只看該作者
35#
發(fā)表于 2025-3-27 13:40:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:31:24 | 只看該作者
37#
發(fā)表于 2025-3-27 22:19:51 | 只看該作者
Random Partitions with Non Negative rth Differences .(.) Let .(λ) be a positive .. difference chosen uniformly at random in λ. The aim of this work is to show that for every . ≥ 1, the probability that .(λ) ≥ . approaches the constant .. as . → ∞ This work is a generalization of a result on integer partitions [.] and was motivated by a recent identi
38#
發(fā)表于 2025-3-28 03:00:02 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:54 | 只看該作者
Facility Location Constrained to a Polygonal Domaingonal region. Many realistic facility location problems require the facilities to be constrained to lie in a simple polygonal region. Given a set . of . demand points and a simple polygon . of . vertices, we first show how to compute the location of an obnoxious facility constrained to lie in ., in
40#
發(fā)表于 2025-3-28 11:45:18 | 只看該作者
A Deterministic Polynomial Time Algorithm for Heilbronn’s Problem in Dimension Threeost .(1/..). This conjecture was disproved by Komlós, Pintz and Szemerédi [.] who showed that for every . there exists a configuration of . points in the unit square [0, 1]. where all triangles have area at least ω(log ./..). Here we will consider a 3-dimensional analogue of this problem and we will
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 永善县| 南投县| 南宫市| 米易县| 吴忠市| 天气| 洛南县| 安康市| 永平县| 丹寨县| 宁津县| 东丽区| 西吉县| 安阳市| 临漳县| 瓦房店市| 张家口市| 滕州市| 平邑县| 西乌| 建阳市| 宽甸| 南投县| 塔城市| 宣城市| 小金县| 清远市| 大理市| 泽州县| 临洮县| 勃利县| 绿春县| 都安| 临安市| 吴堡县| 唐山市| 宜城市| 临武县| 扎囊县| 肇庆市|