找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kontsevich’s Deformation Quantization and Quantum Field Theory; Nima Moshayedi Book 2022 The Editor(s) (if applicable) and The Author(s),

[復制鏈接]
查看: 16435|回復: 36
樓主
發(fā)表于 2025-3-21 17:02:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory
編輯Nima Moshayedi
視頻videohttp://file.papertrans.cn/546/545624/545624.mp4
概述Explains the connection between Kontsevich‘s deformation quantization and QFT.Provides a concise introduction to Differential, Symplectic and Poisson Geometry.Includes numerous examples and exercises
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Kontsevich’s Deformation Quantization and Quantum Field Theory;  Nima Moshayedi Book 2022 The Editor(s) (if applicable) and The Author(s),
描述This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder.? This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems..?Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites..
出版日期Book 2022
關鍵詞Deformation Quantization; Differential Geometry; Symplectic Geometry; Poisson Sigma Model; Quantum Field
版次1
doihttps://doi.org/10.1007/978-3-031-05122-7
isbn_softcover978-3-031-05121-0
isbn_ebook978-3-031-05122-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory影響因子(影響力)




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory影響因子(影響力)學科排名




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory網絡公開度




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory網絡公開度學科排名




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory被引頻次




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory被引頻次學科排名




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory年度引用




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory年度引用學科排名




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory讀者反饋




書目名稱Kontsevich’s Deformation Quantization and Quantum Field Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:48:15 | 只看該作者
Book 2022ch and Cattaneo & Felder.? This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expec
板凳
發(fā)表于 2025-3-22 02:56:48 | 只看該作者
地板
發(fā)表于 2025-3-22 05:47:34 | 只看該作者
5#
發(fā)表于 2025-3-22 10:10:15 | 只看該作者
Book 2022, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites..
6#
發(fā)表于 2025-3-22 14:54:31 | 只看該作者
0075-8434 Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites..978-3-031-05121-0978-3-031-05122-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
7#
發(fā)表于 2025-3-22 19:27:21 | 只看該作者
8#
發(fā)表于 2025-3-22 23:56:34 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:21 | 只看該作者
Nima Moshayedi einführende Darstellung in die transformationsorientierte Theorie betrieblicher Wertsch?pfung notwendig erscheint. Der Abschnitt 7.2 postuliert die Existenz und Kenntnis einer Funktion, welche den Erfolg der Produktion misst und die Grundlage für die Bewertung verschiedener Produktionsaktivit?ten i
10#
發(fā)表于 2025-3-23 09:06:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 20:05
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
天津市| 阆中市| 本溪市| 民权县| 鹿邑县| 丰宁| 东莞市| 营山县| 聊城市| 南丰县| 雷州市| 信丰县| 玉田县| 扶绥县| 大英县| 托里县| 磐安县| 九江县| 吉林省| 平远县| 郑州市| 霍林郭勒市| 郁南县| 扶余县| 三穗县| 绍兴县| 盐池县| 莱西市| 阿坝县| 武安市| 益阳市| 巍山| 招远市| 宾阳县| 安图县| 丹江口市| 江阴市| 冷水江市| 根河市| 潜山县| 甘孜县|