找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Konkrete Mathematik (nicht nur) für Informatiker; Mit vielen Grafiken Edmund Weitz Textbook 20181st edition Springer Fachmedien Wiesbaden

[復制鏈接]
樓主: Alacrity
31#
發(fā)表于 2025-3-26 23:03:02 | 只看該作者
32#
發(fā)表于 2025-3-27 01:34:27 | 只看該作者
Mengen,werden eingeführt und parallel in Python demonstriert. Einen Schwerpunkt bildet die in Fachartikeln allgegenw?rtige beschreibende Mengenschreibweise. Als Vertiefung werden am Ende des Kapitels die reellen Zahlen über Dedekindsche Schnitte konstruiert.
33#
發(fā)表于 2025-3-27 05:36:27 | 只看該作者
Erste Schritte mit Python,Im ersten Kapitel geht es um die Grundlagen des Programmierens in Python: Variablen, Zuweisungen, Iterationen, bedingte Anweisungen und die Definition von Funktionen. Es werden keine Programmierkenntnisse vorausgesetzt.
34#
發(fā)表于 2025-3-27 13:08:29 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:41:37 | 只看該作者
Negative Zahlen,Im vierten Kapitel werden die Konzepte der Teilbarkeit und der modularen Arithmetik auf negative Zahlen ausgeweitet. Zudem wird das Zweierkomplement als Darstellung negativer ganzer Zahlen in Computern eingeführt.
37#
發(fā)表于 2025-3-28 01:43:40 | 只看該作者
38#
發(fā)表于 2025-3-28 03:05:29 | 只看該作者
Division,Im sechsten Kapitel wird gezeigt, dass man in manchen Restklassenringen dividieren kann, w?hrend das in anderen nicht m?glich ist. Das führt zum Konzept der endlichen K?rper. Als Anwendung endlicher K?rper wird ein einfaches Fehlererkennungsverfahren gezeigt.
39#
發(fā)表于 2025-3-28 09:28:02 | 只看該作者
Der chinesische Restsatz,Im siebten Kapitel geht es um den chinesischen Restsatz: ein Verfahren aus der Zahlentheorie, das in der Kryptographie eine Rolle spielt.
40#
發(fā)表于 2025-3-28 10:46:45 | 只看該作者
Primzahlen,Im achten Kapitel werden Primzahlen thematisiert. Die grundlegenden Resultate wie z.B. der Fundamentalsatz der Arithmetik und der Satz von Euklid werden begründet. Weiterführende Konzepte wie der Primzahlsatz, Primzahlzwillinge, die Ulam-Spirale und die Riemannsche Vermutung werden kurz vorgestellt.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
民丰县| 林甸县| 平塘县| 元江| 顺义区| 西盟| 汉源县| 克山县| 祥云县| 桐庐县| 阳谷县| 依安县| 龙岩市| 察哈| 常熟市| 孟村| 涞源县| 拉萨市| 肇州县| 惠州市| 台北市| 贵溪市| 冕宁县| 本溪| 馆陶县| 亳州市| 淳化县| 定西市| 双鸭山市| 乌兰县| 灯塔市| 清流县| 乳山市| 天镇县| 静安区| 乌什县| 怀远县| 新化县| 新余市| 都安| 尚义县|