找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kongruentes Policy-Lernen als lernbedingter Policy-Wandel; Zum Koordinierungsme Sandra Plümer Book 2024 Der/die Herausgeber bzw. der/die Au

[復制鏈接]
樓主: fallacy
31#
發(fā)表于 2025-3-26 22:22:35 | 只看該作者
32#
發(fā)表于 2025-3-27 02:41:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:07:05 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
34#
發(fā)表于 2025-3-27 12:17:48 | 只看該作者
ble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
35#
發(fā)表于 2025-3-27 17:33:52 | 只看該作者
Sandra Plümerble case (see the References). We want to bring about some new aspects, which also lead to interesting applications..It is well known that the closed orientable surface of characteristic 2. is a regular two-fold cover of the closed non-orientable surface of characteristic .. Thus, every non-orientab
36#
發(fā)表于 2025-3-27 21:19:08 | 只看該作者
Sandra Plümerf smooth manifolds. In particular, it can be used to compare those aspects of field theories (e.g. of classical (Newtonian) mechanics, hydrodynamics, electrodynamics, relativity theory, classical Yang-Mills theory and so on) that are described by such equations..Employing a geometric (jet space) app
37#
發(fā)表于 2025-3-28 00:06:53 | 只看該作者
Sandra Plümeralgebras of two modules in that class implies that the modules are isomorphic. A class satisfies a Jacobson radical isomorphism theorem if an isomorphism between only the Jacobson radicals of the endomorphism rings of two modules in that class implies that the modules are isomorphic. Jacobson radica
38#
發(fā)表于 2025-3-28 03:44:15 | 只看該作者
39#
發(fā)表于 2025-3-28 07:15:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
澄江县| 桓仁| 泽普县| 山阴县| 佛坪县| 莱阳市| 桂平市| 石家庄市| 高陵县| 勃利县| 山西省| 兴安县| 策勒县| 隆回县| 平定县| 惠来县| 浪卡子县| 梅河口市| 定西市| 正定县| 团风县| 永嘉县| 汤原县| 茌平县| 突泉县| 宜章县| 合水县| 武功县| 天祝| 襄城县| 铜梁县| 新宁县| 潞城市| 内江市| 祥云县| 资溪县| 清镇市| 石林| 闸北区| 运城市| 太仓市|