找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kolmogorov Operators and Their Applications; Stéphane Menozzi,Andrea Pascucci,Sergio Polidoro Conference proceedings 2024 The Editor(s) (i

[復制鏈接]
樓主: 決絕
21#
發(fā)表于 2025-3-25 04:44:12 | 只看該作者
22#
發(fā)表于 2025-3-25 10:33:07 | 只看該作者
Hypocoercivity Methods for Kinetic Fokker-Planck Equations with Factorised Gibbs States,es the Fokker-Planck and the transport operators. Rates of convergence in presence of a global equilibrium, or decay rates otherwise, are estimated either by the corresponding rates in the diffusion limit, or by the rates of convergence to local equilibria, under moment conditions. On the basis of t
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:33:49 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:16 | 只看該作者
26#
發(fā)表于 2025-3-26 01:26:00 | 只看該作者
About the Regularity of Degenerate Non-local Kolmogorov Operators Under Diffusive Perturbations,ither local or non-local. More precisely, we establish that some estimates, such as the Schauder and Sobolev ones, already known for the non-perturbed operator still hold, and with the same constants, when we perturb the Ornstein-Uhlenbeck operator with second order diffusions with coefficients only
27#
發(fā)表于 2025-3-26 07:05:13 | 只看該作者
28#
發(fā)表于 2025-3-26 08:52:42 | 只看該作者
On Averaged Control and Iteration Improvement for a Class of Multidimensional Ergodic Diffusions,ith variable diffusion and drift coefficients both depending on control; the diffusion coefficient must be a scalar function. The convergence of Howard’s iterative reward improvement algorithm to the unique solution of Bellman’s equation is also established.
29#
發(fā)表于 2025-3-26 13:41:41 | 只看該作者
Conference proceedings 2024 arise in several research fields...This volume collects a selection of the talks given at the Cortona meeting by experts in both fields, who presented the most recent developments of the theory. Particular emphasis has been given to degenerate partial differential equations, It? processes, applicat
30#
發(fā)表于 2025-3-26 18:31:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
自贡市| 岚皋县| 如皋市| 陈巴尔虎旗| 高青县| 北宁市| 尚义县| 蒙阴县| 天峨县| 通河县| 德保县| 鹤岗市| 八宿县| 安阳县| 公安县| 武乡县| 平顶山市| 睢宁县| 乌兰浩特市| 修水县| 奉新县| 九龙坡区| 大石桥市| 洛扎县| 南木林县| 获嘉县| 特克斯县| 石屏县| 七台河市| 姚安县| 壶关县| 含山县| 嵩明县| 大名县| 阿城市| 永康市| 宁海县| 湖南省| 惠安县| 宜宾县| 安庆市|