找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 14th International C Han Qiu,Cheng Zhang,Sun-Yuan Kung Conference proceedings 2021 Springer

[復(fù)制鏈接]
樓主: Espionage
21#
發(fā)表于 2025-3-25 05:39:37 | 只看該作者
Evaluating Dataset Creation Heuristics for Concept Detection in Web Pages Using BERTassess dataset quality, as most applications are dataset specific. In this study, we investigate and evaluate the performance of three annotation heuristics for a classification task on extracted web data using BERT. We present multiple datasets, from which the classifier shall learn to identify web
22#
發(fā)表于 2025-3-25 08:36:10 | 只看該作者
23#
發(fā)表于 2025-3-25 14:47:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:01:52 | 只看該作者
An Event Detection Method Combining Temporal Dimension and Position Dimensionns remarkable improvements in performance over three event detection methods called Joint Model, Globe Vector- Latent Dirichlet Allocation, and Language Independent Neural Network that do not take into account word positions and temporal information for this task. Specifically, on three datasets of
25#
發(fā)表于 2025-3-25 23:52:15 | 只看該作者
Benjamin Mensa-Bonsu,Tao Cai,Tresor Y. Koffi,Dejiao Niu
26#
發(fā)表于 2025-3-26 01:17:21 | 只看該作者
A Semantic Textual Similarity Calculation Model Based on Pre-training Modelntence search. The traditional calculation of text similarity constructed text vectors only based on TF-IDF, and used the cosine of the angle between vectors to measure the similarity between two texts. However, this method cannot solve the similar text detection task with different text representat
27#
發(fā)表于 2025-3-26 06:49:31 | 只看該作者
Representation Learning of Knowledge Graph with Semantic Vectorsigent recommendation. Representation learning, as a key issue of ., aims to vectorize entities and relations in . to reduce data sparseness and improve computational efficiency. Translation-based representation learning model shows great knowledge representation ability, but there also are limitatio
28#
發(fā)表于 2025-3-26 09:38:24 | 只看該作者
Chinese Relation Extraction with?Flat-Lattice Encoding and?Pretrain-Transfer Strategyegmentation errors, especially for Chinese RE. In this paper, an improved lattice encoding is introduced. Our structure is a variant of the flat-lattice Transformer. The lattice framework can combine character-level and word-level information to avoid segmentation errors. We optimize the position en
29#
發(fā)表于 2025-3-26 14:00:42 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:53 | 只看該作者
An Automatic Method for Understanding Political Polarization Through Social Media issues, social media such as Twitter contains rich information about political polarization. In this paper, we propose an automatic method for discovering information from social media that can help people understand political polarization of the country. Previous researches have answered the “who”
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常熟市| 荃湾区| 贵阳市| 新民市| SHOW| 潜江市| 鹤壁市| 乐清市| 日喀则市| 永登县| 醴陵市| 诏安县| 安新县| 冷水江市| 嘉鱼县| 大石桥市| 沙雅县| 宁远县| 鲜城| 永修县| 布尔津县| 嘉鱼县| 修文县| 专栏| 邳州市| 平南县| 朝阳区| 东宁县| 峨眉山市| 和政县| 达拉特旗| 左云县| 庄河市| 当涂县| 宾阳县| 永仁县| 青铜峡市| 凤冈县| 安陆市| 策勒县| 朝阳市|