找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Science, Engineering and Management; 16th International C Zhi Jin,Yuncheng Jiang,Wenjun Ma Conference proceedings 2023 The Editor

[復制鏈接]
樓主: Ford
31#
發(fā)表于 2025-3-26 23:07:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:15:50 | 只看該作者
Multi-level and?Multi-interest User Interest Modeling for?News Recommendations the minimum interest modeling unit when modeling user’s interests. They ignored the low-level and high-level signals from user’s behaviors. In this paper, we propose a news recommendation method combined with multi-level and multi-interest user interest modeling, named MMRN. In contrast to existin
33#
發(fā)表于 2025-3-27 07:09:17 | 只看該作者
34#
發(fā)表于 2025-3-27 11:26:16 | 只看該作者
35#
發(fā)表于 2025-3-27 15:45:45 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:30 | 只看該作者
A 2D Entity Pair Tagging Scheme for Relation Triplet Extractiondes, extensive experiments on two public datasets widely used by many researchers are conducted, and the experimental results perform better than the state-of-the-art baselines overall and deliver consistent performance gains on complex scenarios of various overlapping patterns and multiple triplets
37#
發(fā)表于 2025-3-28 00:28:21 | 只看該作者
MAGNN-GC: Multi-head Attentive Graph Neural Networks with?Global Context for?Session-Based Recommendssion items with the learned global-level and local-level item embeddings using the multi-head attention mechanism. Additionally, we use the focal loss as a loss function to adjust sample weights and address the problem of imbalanced positive and negative samples during model training. Our experimen
38#
發(fā)表于 2025-3-28 03:07:31 | 只看該作者
Chinese Relation Extraction with?Bi-directional Context-Based Lattice LSTMention semantic interaction-enhanced (CSI) classifier promotes exchange of semantic information between hidden states from forward and backward perspectives for more comprehensive representations of relation types. In experiments conducted on two public datasets from distinct domains, our method yie
39#
發(fā)表于 2025-3-28 09:39:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:24:23 | 只看該作者
Debiased Contrastive Loss for?Collaborative Filteringof our methods in automatically mining the hard negative instances. Experimental results on three public benchmarks demonstrate that the proposed debiased contrastive loss can augment several existing MF and GNN-based CF models and outperform popular learning objectives in the recommendation. Additi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
蓬溪县| 苏尼特左旗| 阳山县| 泾源县| 临清市| 卓资县| 招远市| 桃源县| 峨山| 仪征市| 玛曲县| 桦南县| 息烽县| 公主岭市| 马关县| 无为县| 温泉县| 塔河县| 即墨市| 溆浦县| 萨迦县| 翼城县| 黄浦区| 芜湖市| 廉江市| 巴中市| 广河县| 昌吉市| 阳原县| 仙居县| 枞阳县| 垦利县| 子长县| 樟树市| 中方县| 玉山县| 贺州市| 珠海市| 育儿| 沅陵县| 海口市|