找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Graph and Semantic Computing. Knowledge Computing and Language Understanding; Third China Conferen Jun Zhao,Frank van Harmelen,Xi

[復(fù)制鏈接]
樓主: 選民
41#
發(fā)表于 2025-3-28 17:40:39 | 只看該作者
Convolutional Neural Network-Based Question Answering Over Knowledge Base with Type Constraint,g, our method relies on various components for solving different sub-tasks of the problem. In the first stage, we directly use the result of entity linking to obtain the topic entity in a question, and simplify the process as a semantic matching problem. We train a neural network to match questions
42#
發(fā)表于 2025-3-28 20:46:28 | 只看該作者
43#
發(fā)表于 2025-3-29 00:48:14 | 只看該作者
44#
發(fā)表于 2025-3-29 06:27:52 | 只看該作者
DSKG: A Deep Sequential Model for Knowledge Graph Completion,ompletion models compel two-thirds of a triple provided (e.g., . and .) to predict the remaining one. In this paper, we propose a new model, which uses a KG-specific multi-layer recurrent neutral network (RNN) to model triples in a KG as sequences. It outperformed several state-of-the-art KG complet
45#
發(fā)表于 2025-3-29 08:37:50 | 只看該作者
Pattern Learning for Chinese Open Information Extraction, OIE. However, few studies have been reported on OIE for languages beyond English. This paper presents a Chinese OIE system PLCOIE to extract binary relation triples and N-ary relation tuples from Chinese documents. Our goal is to learn general patterns that is composed of both dependency parsing ro
46#
發(fā)表于 2025-3-29 13:11:36 | 只看該作者
Adversarial Training for Relation Classification with Attention Based Gate Mechanism,owever, existing neural networks for relation classification heavily rely on the quality of labelled data and tend to be overconfident about the noise in input signals. They may be limited in robustness and generalization. In this paper, we apply adversarial training to the relation classification b
47#
發(fā)表于 2025-3-29 19:23:38 | 只看該作者
A Novel Approach on Entity Linking for Encyclopedia Infoboxes, construction. However, if the hyperlink is missing in the Infobox, the semantic relatedness cannot be created. In this paper, we propose an effective model and summarize the most possible features for the infobox entity linking problem. Empirical studies confirm the superiority of our proposed mode
48#
發(fā)表于 2025-3-29 23:16:20 | 只看該作者
49#
發(fā)表于 2025-3-30 01:57:03 | 只看該作者
Knowledge Augmented Inference Network for Natural Language Inference,models on Natural Language Inference (NLI) task. Different from previous works that use one-hot representations to describe external knowledge, we employ the TransE model to encode various semantic relations extracted from the external Knowledge Base (KB) as distributed relation features. We utilize
50#
發(fā)表于 2025-3-30 07:53:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲麻莱县| 徐水县| 赣榆县| 元江| 柳州市| 大洼县| 澜沧| 昌宁县| 贵德县| 澄迈县| 开平市| 巴楚县| 衡山县| 舒兰市| 甘泉县| 九江市| 保定市| 开平市| 黔南| 郁南县| 阜新市| 于田县| 鹤峰县| 娄烦县| 临武县| 广河县| 祁门县| 封开县| SHOW| 渭源县| 本溪市| 枣庄市| 尼勒克县| 岳西县| 米易县| 那曲县| 武乡县| 辽阳市| 徐州市| 天峨县| 驻马店市|