找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery in Inductive Databases; 5th International Wo Sa?o D?eroski,Jan Struyf Conference proceedings 2007 Springer-Verlag Berli

[復制鏈接]
查看: 55012|回復: 59
樓主
發(fā)表于 2025-3-21 16:37:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Knowledge Discovery in Inductive Databases
副標題5th International Wo
編輯Sa?o D?eroski,Jan Struyf
視頻videohttp://file.papertrans.cn/544/543875/543875.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Knowledge Discovery in Inductive Databases; 5th International Wo Sa?o D?eroski,Jan Struyf Conference proceedings 2007 Springer-Verlag Berli
出版日期Conference proceedings 2007
關鍵詞Pattern Mining; classification; clustering; constraint-based mining; data management; data mining; databas
版次1
doihttps://doi.org/10.1007/978-3-540-75549-4
isbn_softcover978-3-540-75548-7
isbn_ebook978-3-540-75549-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Knowledge Discovery in Inductive Databases影響因子(影響力)




書目名稱Knowledge Discovery in Inductive Databases影響因子(影響力)學科排名




書目名稱Knowledge Discovery in Inductive Databases網(wǎng)絡公開度




書目名稱Knowledge Discovery in Inductive Databases網(wǎng)絡公開度學科排名




書目名稱Knowledge Discovery in Inductive Databases被引頻次




書目名稱Knowledge Discovery in Inductive Databases被引頻次學科排名




書目名稱Knowledge Discovery in Inductive Databases年度引用




書目名稱Knowledge Discovery in Inductive Databases年度引用學科排名




書目名稱Knowledge Discovery in Inductive Databases讀者反饋




書目名稱Knowledge Discovery in Inductive Databases讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:35:59 | 只看該作者
Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDserns but also compactly indexes the output data in main memory. After mining, the pattern results can be analyzed efficiently by using algebraic operations. BDD-based data structures have previously been used successfully in VLSI logic design, but our method is the first practical application of BDD-based techniques in the data mining area.
板凳
發(fā)表于 2025-3-22 02:12:50 | 只看該作者
Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growthications. The second is an implementation of the general idea of Common Counting for FP-growth. The last is a completely new strategy, motivated by identified shortcomings of the previous two strategies in the context of FP-growth.
地板
發(fā)表于 2025-3-22 05:31:48 | 只看該作者
Mining Bi-sets in Numerical Datairectly numerical data to extract collections of relevant bi-sets, i.e., couples of associated sets of objects and attributes which satisfy some user-defined constraints. Not only we propose a new pattern domain but also we introduce a complete solver for computing the so-called numerical bi-sets. Preliminary experimental validation is given.
5#
發(fā)表于 2025-3-22 08:45:21 | 只看該作者
Analysis of Time Series Data with Predictive Clustering Treeshows that Clus-TS is able to cluster genes with similar responses, and to predict the time series based on the description of a gene. Clus-TS is part of a larger project where the goal is to investigate how global models can be combined with inductive databases.
6#
發(fā)表于 2025-3-22 16:19:58 | 只看該作者
Integrating Decision Tree Learning into Inductive Databasesrmat proposed earlier for association rules, and queryable using standard SQL; and we present a prototype system in which part of the needed functionality is implemented. In particular, we have developed an exhaustive tree learning algorithm able to answer a wide range of constrained queries.
7#
發(fā)表于 2025-3-22 19:25:52 | 只看該作者
8#
發(fā)表于 2025-3-22 22:12:46 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:17 | 只看該作者
Extracting Trees of Quantitative Serial Episodeshaviors among the occurrences, according to the duration of the . steps, and providing quantitative bounds of these durations organized in a tree structure; (2) the possibility to extract them in a complete way; and (3) to perform such extractions at the cost of a limited overhead with respect to the extraction of standard episodes.
10#
發(fā)表于 2025-3-23 06:57:53 | 只看該作者
IQL: A Proposal for an Inductive Query Languagetives. The language integrates ideas from several other declarative programming languages, such as pattern matching and function typing. We hope that it will be useful as an overall specification language for integrating data mining systems and principles.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
青川县| 奉贤区| 盐津县| 青州市| 乡宁县| 临颍县| 淮滨县| 青神县| 嘉义县| 永安市| 任丘市| 车致| 洛浦县| 那坡县| 永修县| 乌鲁木齐县| 梁山县| 昌邑市| 宾阳县| 响水县| 岳普湖县| 大竹县| 巩义市| 澜沧| 防城港市| 嵊州市| 革吉县| 卢湾区| 梁平县| 竹北市| 徐州市| 衡水市| 新密市| 浙江省| 龙门县| 白沙| 宁国市| 竹溪县| 井研县| 博湖县| 阜平县|