找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery in Databases: PKDD 2003; 7th European Confere Nada Lavra?,Dragan Gamberger,Hendrik Blockeel Conference proceedings 2003

[復制鏈接]
樓主: 警察在苦笑
11#
發(fā)表于 2025-3-23 13:14:56 | 只看該作者
Mr-SBC: A Multi-relational Na?ve Bayes Classifierred in several tables related by foreign key constraints and each example is represented by a set of related tuples rather than a single row as in the classical data mining setting. This work is characterized by three aspects. First, an integrated approach in the computation of the posterior probabi
12#
發(fā)表于 2025-3-23 17:09:42 | 只看該作者
SMOTEBoost: Improving Prediction of the Minority Class in Boostingnority (or interesting) class usually produces biased classifiers that have a higher predictive accuracy over the majority class(es), but poorer predictive accuracy over the minority class. SMOTE (Synthetic Minority Over-sampling TEchnique) is specifically designed for learning from imbalanced data
13#
發(fā)表于 2025-3-23 18:25:38 | 只看該作者
Using Belief Networks and Fisher Kernels for Structured Document Classifications to simultaneously take into account structure and content information. We then show how this model can be extended into a more efficient classifier using the Fisher kernel method. In both cases model parameters are learned from a labelled training set of representative documents. We present experi
14#
發(fā)表于 2025-3-23 23:18:48 | 只看該作者
A Skeleton-Based Approach to Learning Bayesian Networks from Dataes the main advantages of these algorithms yet avoids their difficulties. In our approach, first an undirected graph, termed the ., is constructed from the data, using zero- and first-order dependence tests. Then, a search algorithm is employed that builds upon a quality measure to find the best net
15#
發(fā)表于 2025-3-24 04:12:45 | 只看該作者
16#
發(fā)表于 2025-3-24 09:51:08 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:57 | 只看該作者
Visualizing Class Probability Estimatorsto the users is how to gain information from the models produced. Unfortunately, some of the most powerful inductive learning algorithms generate “black boxes”—that is, the representation of the model makes it virtually impossible to gain any insight into what has been learned. This paper presents a
18#
發(fā)表于 2025-3-24 16:50:19 | 只看該作者
19#
發(fā)表于 2025-3-24 20:13:24 | 只看該作者
20#
發(fā)表于 2025-3-25 00:10:19 | 只看該作者
Conference proceedings 2003tted papers, 40 were accepted for publication in the ECML2003proceedings,and40wereacceptedforpublicationinthePKDD2003 proceedings. All the submitted papers were reviewed by three referees. In ad- tion to submitted papers, the conference program consisted of four invited talks, four tutorials, seven
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
郯城县| 嘉定区| 乌兰浩特市| 青海省| 静乐县| 桓仁| 临沂市| 阳城县| 确山县| 昆山市| 沁水县| 安阳县| 屯留县| 洛扎县| 利津县| 城步| 莱阳市| 新龙县| 五常市| 堆龙德庆县| 靖边县| 正定县| 保康县| 施甸县| 牙克石市| 梧州市| 丹寨县| 鄂托克旗| 金昌市| 玛多县| 黎城县| 涞源县| 象州县| 全州县| 神农架林区| 吴桥县| 安达市| 永州市| 刚察县| 祁连县| 赤壁市|