找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knowledge Discovery from Sensor Data; Second International Mohamed Medhat Gaber,Ranga Raju Vatsavai,Auroop R. Conference proceedings 2010 S

[復(fù)制鏈接]
樓主: 不要提吃飯
31#
發(fā)表于 2025-3-27 00:40:57 | 只看該作者
Situation-Aware Adaptive Visualization for Sensory Data Stream Mining, user-interactions, real-time decision making and comprehension of the results of mining algorithms. In this paper we propose a novel architecture for situation-aware adaptive visualization that applies intelligent visualization techniques to data stream mining of sensory data. The proposed architec
32#
發(fā)表于 2025-3-27 02:25:56 | 只看該作者
33#
發(fā)表于 2025-3-27 06:18:38 | 只看該作者
WiFi Miner: An Online Apriori-Infrequent Based Wireless Intrusion System,orks (WLAN). Currently, almost all devices are Wi-Fi (Wireless Fidelity) capable and can access WLAN. This paper proposes an Intrusion Detection System, WiFi Miner, which applies an infrequent pattern association rule mining Apriori technique to wireless network packets captured through hardware sen
34#
發(fā)表于 2025-3-27 09:31:38 | 只看該作者
Probabilistic Analysis of a Large-Scale Urban Traffic Sensor Data Set, as the basis for experiments in many research papers. In this paper we report on a large case-study involving statistical data mining of over 100 million measurements from 1700 freeway traffic sensors over a period of seven months in Southern California. We discuss the challenges posed by the wide
35#
發(fā)表于 2025-3-27 17:18:09 | 只看該作者
Spatio-temporal Outlier Detection in Precipitation Data,o understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-. spatial outliers ov
36#
發(fā)表于 2025-3-27 21:35:06 | 只看該作者
Large-Scale Inference of Network-Service Disruption upon Natural Disasters,and the impact of natural disasters to networks, it is important to localize and analyze network-service disruption after natural disasters occur..This work studies an inference of network-service disruption caused by the real natural disaster, Hurricane Katrina. We perform inference using large-sca
37#
發(fā)表于 2025-3-27 23:18:48 | 只看該作者
An Adaptive Sensor Mining Framework for Pervasive Computing Applications,ing data source is dynamic and the patterns change.? We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model.? In our framework, the frequent and periodic patterns of data are first discovered by the Frequ
38#
發(fā)表于 2025-3-28 02:30:58 | 只看該作者
A Simple Dense Pixel Visualization for Mobile Sensor Data Mining,al representations, which most of the time require screen resolutions that are not available in small transient mobile devices. Moreover, when data presents cyclic behaviors, such as in the electricity domain, predictive models may tend to give higher errors in certain recurrent points of time, but
39#
發(fā)表于 2025-3-28 08:40:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:39:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 02:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方山县| 廉江市| 资中县| 大宁县| 克东县| 铜川市| 夏邑县| 天长市| 乌拉特后旗| 依安县| 临洮县| 格尔木市| 黎平县| 鄂伦春自治旗| 彝良县| 珲春市| 大城县| 略阳县| 淮南市| 凤庆县| 双城市| 进贤县| 加查县| 昌吉市| 泽普县| 横峰县| 凤凰县| 工布江达县| 麻阳| 合川市| 中卫市| 汨罗市| 聂拉木县| 额敏县| 文水县| 容城县| 封丘县| 公安县| 津市市| 柘城县| 汕头市|